
Passage reranking is a critical task in various applications, particularly when dealing with large 
volumes of documents. Existing neural architectures have limitations in retrieving the most relevant 
passage for a given question because the semantics of the segmented passages are often 
incomplete, and they typically match the question to each passage individually, rarely considering 
contextual information from other passages that could provide comparative and reference 
information. This paper presents a list-context attention mechanism to augment the passage 
representation by incorporating the list-context information from other candidates. The proposed 
coarse-to-�ne (C2F) neural retriever addresses the out-of-memory limitation of the passage attention 
mechanism by dividing the list-context modeling process into two sub-processes with a cache policy 
learning algorithm, enabling the e�cient encoding of context information from a large number of 
candidate answers. This method can be generally used to encode context information from any 
number of candidate answers in one pass. Di�erent from most multi-stage information retrieval 
architectures, this model integrates the coarse and �ne rankers into the joint optimization process, 
allowing for feedback between the two layers to update the model simultaneously. Experiments 
demonstrate the e�ectiveness of the proposed approach. 
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Passage reranking is a subtask of question answering and 
machine reading comprehension that involves retrieving one or 
several passages (text options) that can best answer a given 
question [1]. Each passage contains one or several sentences, as 

shown in Table 1. �e most common approach is to model the 
question-answer (QA) pair [2], and then compute various 
similarity measures between obtained representations. 
Finally, we can choose the high-score candidates as the 
answer. 

each passage by considering the context information from other 
candidates can lead to more con�dent results. We use 
“list-context” across di�erent passages to di�erentiate the 
“context” that is o�en discussed in the same QA pair. 
Context-independent representations may limit passage 
semantics when other passages provide useful context 
information for the question. For example, passage A in Table 1 
explains that “cardiovascular disease” refers to heart disease. 
Although passage C does not mention heart disease, we can still 
derive relevant information from passage A.

 Modeling list-context is a nontrivial task. �e �rst challenge 
is to emphasize the comparative and reference information. 
Previous studies have tackled this challenge by utilizing 
hierarchical gated recurrent unit recurrent neural networks 
(GRU RNNs) to consider context information among sentences 
[5]. However, they did not explicitly enhance sentence 
representation by leveraging other candidates. Another 
approach is multi-mention learning, which models multiple 
mentions in a document to answer questions [6]. While these 
methods have made signi�cant contributions, they do not 
explicitly model the context information in the passage list. To 
address this limitation, we propose a list-context attention 
mechanism composed of static attention and adaptive attention. 
�is mechanism injects list context information into the 
passage, allowing each candidate to consider the whole list 
semantics by attending to all the candidates. Additionally, 
adaptive attention enables each passage to adaptively interact 
with other candidates by considering their correlation 
information.

 �e second challenge is the large number of candidate 
passages. It’s di�cult to analyze thousands of passages 
simultaneously without running into technical issues. Previous 
research typically broke down a long list of passages into smaller 
parts and then created a context-independent representation of 
each sentence pair. �is approach o�en relies on a multi-stage 
retrieval architecture [7], where the candidate documents are 
repeatedly narrowed down and reordered. Our paper addresses 
this issue by applying a two-stage retrieval approach to the 
neural model. Unlike previous methods, our model streamlines 
the multi-stage process into a two-level (coarse-to-�ne) model. 
First, it selects a good passage set roughly, and then it �netunes 
the selection by ignoring irrelevant instances that are far from 
the classi�cation hyperplane. By training two layers of model 
parameters jointly, our approach enables them to collaborate 
and interact more e�ectively.

 We introduce a cache policy learning (CPL) algorithm to 
model the two-level selection process end-to-end. �e coarse 
selection sub-process uses a scoring function to rank the 
sentences in the cache memory and dynamically selects the 
top-k scoring sentences for further processing. In addition to 
the coarse selection sub-process, our model also incorporates a 
�ne ranker to further re�ne the representations. Our model 
performs passage reranking and parameter optimization 
simultaneously. We conduct experiments on the WIKIQA and 
MS MARCO 2.0 datasets [8,9]. �e results show the 
e�ectiveness of our approach. �e distinctive properties of this 
paper are as follows:

i. �is paper introduces the idea of enhancing passage 
representation by considering context information from 
other candidates. 

ii. �is paper proposes a list-context attention mechanism, 
composed of static attention and adaptive attention, to 
model list-context information. 

iii. �is paper introduces a C2FRetriever with a cache policy 
learning algorithm, which can select answers from a coarse 
to �ne level in a single pass. �e experimental results 
demonstrate the good performance of the proposed 
method.

Related Work
Previous work employs deep learning models to enhance 
sentence representations and compute their similarity. 
Rocktäschel et al. propose a textual entailment model that 
models word relations between sentences by using 
word-to-word attention on an LSTM-RNN [10]. Severyn and 
Moschitti propose CNNR to consider overlapping words to 
encode relational information between question and answer 
[2]. Yin et al. propose 3 attention methods on a CNN model 
(ABCNN) to encode mutual interactions between sentences 
[11]. Miller et al. propose key-value memory networks 
(KV-MemeNN) to select answers by using key-value structured 
facts in the model memory [12]. Wang et al. propose a bilateral 
multi-view matching (BiMPM) model [13], which utilizes an 
attention mechanism to model the mutual interaction of 
sentences at di�erent scales. Bachrach et al. apply two attention 
operations to capture more word-level contextual information, 
but their work still focuses on enhancing sentence-pair 
representations without considering list-level contextual 
information [14]. A work close to ours is the hierarchical 
GRU-RNN [5], which is used to model word-level and 
sentence-level matching and provide a kind of contextual 
information. However, their approach does not explicitly 
enhance sentence representations by using contextual 
information from other candidates. Our approach incorporates 
list-context information to augment sentence representation. 
Ran et al. propose an option comparison network (OCN) for 
multiple choice reading comprehension (MCRC) [15].

 Guo et al. propose the deep dependent matching model 
(DRMM), which introduces a histogram pooling technique to 
summarize the translation matrix [16]. Xiong et al. propose 
KNRM, which uses a kernel pooling layer to so�ly compute the 
frequency of word pairs at di�erent similarity levels [17]. 
MARCO’s o�cial baseline uses two separate DNNs to model 
query-document relevance using local and distributed 
representations, respectively [18]. Conv-KNRM enhances 
KNRM by utilizing CNN to compose n-gram embeddings from 
word embeddings and cross-matched n-grams of di�erent 
lengths [19]. SAN + BERT base maintains a state and iteratively 
re�nes its predictions [20].

 Previous work mainly uses a multi-stage retrieval 
architecture in web search systems [7]. A set of candidate 
documents is generated using a series of increasingly expensive 
machine-learning techniques. present a method for optimizing 
cascaded ranking models [21]. BERT is a pre-trained language 
model based on the bidirectional Transformer architecture 
[22-26]. It has been demonstrated to be highly e�ective in 
generating rich representations for pairs of sentences. BERT 
o�ers a means to directly model the interactions between 
passages. Sentence-BERT (SBERT) is an improved model based 
on BERT and RoBERTa that is used to e�ciently calculate the 
similarity between sentences [27]. It is trained through siamese 

Question: What causes heart disease?  

Passages:  
  A.  Cardiovascular disease (also called heart disease) is a class of diseases that involve the heart or blood vessels (arteries, 
capillaries, and veins).  

  B.  Cardiovascular disease refers to any disease that a�ects the cardiovascular system, principally cardiac disease, vascular 
diseases of the brain and kidney, and peripheral arterial disease.  

  C.  �e causes of cardiovascular disease are diverse, but atherosclerosis and hypertension are the most common.  

  D.  Additionally, with ageing come a number of physiological and morphological changes that alter cardiovascular function 
and lead to subsequently increased risk of cardiovascular disease, even in healthy asymptomatic individuals. ...  

Answer: C 

Table 1. An example of passage reranking.

 Recent studies have improved the quality of general text 
embeddings for representing passages. BAAI general 
embedding (BGE) utilizes the RetroMAE approach for 
pre-training and employs contrastive learning for �ne-tuning 
[3]. Moreover, online services such as OpenAI’s text embedding 
and Cohere-V3 generate text embeddings through their API 
[4]. While previous work has o�en focused on enriching text 
embeddings or enhancing the interaction between 
question-answer pairs, they have rarely considered the in�uence 

of other candidates. As a result, the relationships between 
candidates have not been fully explored. When humans select 
an answer, they consider not only whether each individual 
passage aligns with the question but also the presence of 
superior alternatives. Especially when the passages are derived 
from the same document or related documents, their 
semantics are o�en incomplete, and other candidates may 
contain valuable information that can supplement and 
interpret the current passage. Enriching the representation of 

and triplet network architecture, making the representation of 
sentences in vector space more suitable for cosine-similarity 
calculations. KEPLER proposes a method to jointly optimize 
knowledge embedding (KE) and pre-trained language model 
(PLM) [28]. �is means that the model simultaneously learns 
how to extract relational facts from the knowledge graph and 
how to understand language patterns from text during training.

 General text embedding techniques are commonly 
employed for web search and question answering, and they are 
also used to enhance the capabilities of large language models 
[1,29,30]. BGE adopts the RetroMAE method for pre-training 
and leverages contrastive learning for �ne-tuning [3]. OpenAI 
text embedding produces high-quality text and code vector 
representations through contrastive pre-training on large 
amounts of unsupervised data [4]. Cohere-v31  improves the 
quality of text embeddings by evaluating how well the query 
matches the document’s topic and assessing the overall quality 
of the content. However, when the document is segmented, it is 
easy to cause semantic incompleteness. �e above 
state-of-the-art method only enhances the text embeddings of a 
single passage and cannot obtain supplementary semantic 
information from other passages belonging to the same 
document. Our method provides complementary information 
between passages by modeling the relationship between 
passages in the same document. Our C2FRetriever is trained in 
an end-to-end manner so that the parameters of the coarse 
ranker and �ne ranker can be jointly optimized for better 
collaboration between the two levels.
1https://huggingface.co/Cohere  

Approach
Suppose we have a question Q with l tokens {                           }, 
and a candidate answer set O with n passages {                       }. n 
is the number of passages that can vary over a wide range 
(1~1000). Each passage    contains one or several sentences 
(passage) which consists of      tokens {                          }. �e label 
yi ∈ {0, 1} with 1 denotes a positive answer and 0 otherwise. �e 
goal of the model is to score each passage based on how well it 
answers the question and then rank the passages based on the 
score.

 Our main e�ort lies in designing a deep learning architecture 
that enhances representations by considering the contextual 
information of other candidates. Its main building block has 
two layers, the coarse ranker and the �ne ranker. In the 
following, we �rst describe the two layers and then describe the 
training algorithm.

Coarse ranker
�e architecture of the coarse ranker is shown in the lower part 
of Figure 1. �is layer aims to �lter some answers that are 
irrelevant to the given question to generate an intermediate set 
for performing �ne selection. We use a BERT model to generate 
representations of QA pairs and a single-layer neural network to 
compute matching scores [22]. 

Passage Oi is concatenated with question Q to form a complete 
sequence, denoted as ⟨[CLS]; Q; [SEP]; Oi; [SEP]⟩.

    
where              is the QA representation. Fbert denotes the 
network de�ned in Devlin et al. [22]. �e representations are 

then projected to matching scores using a single layer neural 
network.

Where W^c∈ R^(d and b^c is a scalar. σ is the sigmoid 
activation function. �is layer takes all QA pairs as input          
[(Q, O1), (Q, O2), ..., (Q, O   ], and then the model assigns a 
score to each candidate.

 Modeling all candidates directly will result in 
out-of-memory issues due to the large amount of list-context 
information that needs to be processed simultaneously. �e 
model parameter size is very large, and the gradient state 
retained during the optimization process will double the 
memory usage. To solve this problem, we propose using 
di�erent paths and caching mechanisms. Each path represents a 
di�erent function that processes the data in a way that reduces 
memory usage. �e coarse ranker creates a cache used to store 
the top-k passages it has encountered previously. According to 
p_, passages are dynamically ranked through path S1, which 
contains the function listed below.

where h0 is the initial state of the empty cache. ht is the cache 
state a�er t step update and contains the selected passages. K 
denotes the ranking function.

 Prior early-stage models typically process all the candidates 

Static attention
To capture and compose the context semantics from the answer 
list, our model uses an attention mechanism which achieves the 
best performance in di�erent alternatives to obtain the 
list-context representation [31,32]. �is method extracts 
informative passages and aggregates their representations to 
form the list-context representation V. �is method �rst 
measures the weight of each passage in the list context. 

where Cl ∈Rd is the context vector that can be jointly trained. 
�en, this model computes the normalized weight of each 
passage through a so�max function and aggregates these 
representations.

where max(u) gets the max value of [u_0, u_1, ..., u] where k is 
the candidate number. �is operation encodes the list context 
into a vector which summarizes the main semantics of this list. 
�is allows the model to so�ly consider all candidates in the 
entire list.

Where V  is the list-context representation.

Adaptive attention
While the static attention supplements the list-context 
information for each passage, V  is the same for all candidates 
and does not consider the question. Ideally, we would like to 
overcome the above two problems, by considering list-context 
information and adaptively incorporating the context 
information for each passage based on the question. Our model 
resolves this problem by using adaptive attention which injects 
the correlation information of passages into passage 
representation directly, as shown in Figure 2. �is method �rst 
computes the correlation weight between these passages by 
considering the semantic similarity of the QA pair and the 
list-context information. 

       
�en, this method obtains normalized correlation weights 
through a so�max function.
 

�e adaptive context representation is obtained by calculating 
the weighted sum of the passage representations.

where Z is the adaptive context of i-th passage. By using this 
attention scheme, each passage has a set of adaptive correlation 
weights with other candidates. �is correlation information can 
aggregate the passage representations �exibly. �is interaction 
operation encodes the correlation between candidates while 
also considering the list-context information and question.
�en, the ranking score of the options in the cache can be 
calculated as below.

Where f))�R^(1×τ) and (f))are linear composition matrix and 
bias. τ is vector dimension. [;] denotes the concatenation 
operation. (f)) is the score vector.

and then retain the top-k candidates which are also written to 
disk. Di�erent from them, we incrementally maintain the cache 
memory which only retains the top-k scoring QA pairs. k is a 
hyperparameter. �en, residual path S2 is used to connect the 
QA representation to the �ne ranker, and it contains the 
function of the equation (4).

Where (c) ) represents the    is the matrix 
for top-k QA pairs. (f) denotes the �ne ranker. C is the selection 
function.

 �e residual path S3 indicates that it is used to transfer the 
top-k paragraphs selected in the coarse ranker to the �ne ranker 
layer and generate a vector representation of the passage. Unlike 
the vector representation in the coarse ranker, it only contains 
the content of the passage, not the question. �ese passages are 
derived from the top-k candidate paragraphs to generate list 
context information. �e sorting result is the result of the 
borrowed coarse ranker without repeated calculations. �is 
path can be described by equation (5). Finally, the selected 
passages and representations in the cache are sent to the �ne 
ranker.

Where (f)) is the matrix for top-k passages.(c) is the 
representation for i-th passage, which can be calculated by 
equation (6).

Fine ranker
�e inputs to the �ne ranker are vectors of top-k QA pairs ((f)) 
and top-k passages (f)). �e architecture of the �ne ranker is 
depicted in Figure 2. It incorporates a list-context attention 
mechanism that combines both static and adaptive attention. 

A�er getting the top-k sentences, this model will carry out the 
�ne selection process as described in the Fine Ranker 
subsection. �is model is trained using the log loss of two-level 
selection as shown below.

where yj is the label of the j-th passage. (c)  and (f) are the 
predicted score of j-th passage in the coarse and �ne rankers 
respectively. �en, these two layers are jointly trained to �nd a 
balance between passage selection and joint parameter 
optimization, as shown below.

where λ (We set λ=1.0) is a hyper-parameter to weigh the 
in�uence of the �ne ranker.

 �e asymptotic complexity is described as follows. Assuming 
that all hidden dimensions are ρ, the complexity of matrix (ρ×
ρ)-vector (ρ×1) multiplication is O(ρ2). BERT takes O(Cber). 
For the coarse ranker, calculating the BERT representation of n 
QA pairs and passages takes O(nCber). To maintain the cache, 
we need a top-k sort operation which takes O(nk) at the worst 

case. For the �ne ranker, the list context information requires 
O(ρ2). �e adaptive context information requires O(kρ2). 
�erefore, the total complexity is O(〖nC〗_bert). For BERT, it 
mainly includes matrix-vector multiplication, so the optimized 
calculation requires O(mlρ2). where m is the number of 
matrix-vector multiplications, and l is the sequence length. �e 
computational complexity of this model is still close to that of 
BERT.

Experiments
Datasets
WIKIQIA

�is is a standard open-domain QA dataset. �e questions are 
sampled from the Bing query logs, and the candidate sentences 
are extracted from paragraphs of the associated Wiki pages. 
�is dataset includes 3,047 questions and 29,258 sentences [8], 
where 1,473 candidate passages are labeled as answer sentences. 
Each passage contains only one sentence. We use the standard 
data splits in experiments. Figure 3 visualizes the data 
distribution of this dataset. �e x- and y- axes denote the 
number of candidate sentences and the number of questions 
respectively. �e candidate number of each question ranges 
from 1 to 30 and the average candidate number is 9.6. �e 
average length of question and answer are 6.5 and 25.1 words 
respectively.

Training algorithm
Prior multi-stage retrieval methods typically cascade di�erent 
machine learning techniques. Di�erent from the cascaded 
ranking architecture, we introduce the CPL algorithm to train a 
two-level network for the two-stage retrieval problem. �is 
algorithm performs ranking operations during the training 
process and can optimize the two-stage retrieval processes 
jointly.

 As shown in Algorithm 1, in line 1, this model �rst initializes 
the cache memory. �en, during model training, this model 
adds the ground truth answer to the memory, in line 2. In lines 
3-12, this model maintains the cache memory by coarsely 

selecting the top-k candidates. In lines 4-5, this model calculates 
the matching score based on the BERT representation. If the 
current candidate is a positive answer, its index j, matching 
score (c))  and representation pBert will be added to the cache, 
in line 7. If the current candidate does not match this question, 
this model will maintain the top-k candidates based on their 
scores. In line 13, this model merges the cache memory. In line 
14, this model incorporates the context information of other 
sentences in the �ne ranker to augment the passage 
representation. Finally, this model calculates the loss values of 
coarse and �ne rankers. �en, we can update the model 
parameters by backpropagation using an optimization 
algorithm.

MS MARCO 2.02 

�is is a large-scale machine reading comprehension dataset 
sampled from Bing’s search query logs [9]. We choose the 
dataset for the passage re-ranking task. Given a set of 1000 
passages that have been retrieved using the BM25 algorithm, 
re-rank these passages on their relevance to the query. �is 
dataset was the primary focus of the 2020 and 2019 TREC Deep 
Learning Track. It has also been utilized as a teaching resource 
for the ACM SIGIR/SIGKDD AFIRM Summer School, which 
o�ers courses on Machine Learning for Data Mining and 
Search. Figure 4 visualizes the data distribution of this dataset. 

�e x- and y- axes denote the number of candidate passages and 
the number of questions respectively. �e training set contains 
398,792 questions. �e number of passages in each question 
ranges from 2 to 732. �e question length ranges from 1 to 38 
words. �e passage length ranges from 1 to 362 words. Each 
question average has 100.7 passage candidates. On average, each 
question has one relevant passage. �e development set and test 
set contain 6,980 and 6,837 questions respectively. Each 
question has 1000 passages candidates retrieved with BM25 
from the MS MARCO corpus. In the test set, the question 
length ranges from 2 to 30 words. �e passage length ranges 
from 1 to 287 words.

Hyper-parameters
�is paper employs the BERT-base-uncased model to generate 
representations for sentence pairs. We utilize the output of the 
“[CLS]” token from the �nal layer of BERT as a representation 
of the QA pair. �e projection layer employs a single-layer 
neural network with the hyperbolic tangent activation function 
to generate 200-dimensional vector representations. We use 40 
tokens as the maximum length for questions and 200 tokens for 
answers. �e cache size is set to 15.

 �e AdamW optimization algorithm is used to update the 
model parameters [33]. We �ne-tune the BERT-base-uncased 

model on the passage reranking datasets. �e models run on an 
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (Mem: 330G) 
& 8 Tesla V100s and an Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz (Mem: 256) & 8 RTX 2080Tis.

Evaluation
�is paper uses mean average precision (MAP) and mean 
reciprocal rank (MRR) to evaluate the performance of the 
model. For the MS MARCO 2.0 dataset, we use the o�cial 
script to evaluate our results. �is script calculates the MRR@10 
which considers only the top 10 passages.

Results on the WIKIQA dataset
Table 2 presents the experimental result. Most baseline deep 
learning models typically design e�ective feature extraction 
schemes to better derive features from QA pairs for calculating 
question-answer similarity. �e BERT model has a similar goal 
of mapping a QA pair to a valid representation. �e proposed 
models are the following: 

document and consider all the sentences. Note that this 
setting cannot tackle a situation that has unlimited 
candidates. �e max pooling extracts the document 
information. Because the passage number is less than 30, so 
we can get the max pooling. 

iii. C2Retriever is the proposed model with list and adaptive 
context information.

 We observe that our model outperforms the BERT base and 
improves 1.93% MAP and 0.71% MRR respectively to 
wGRU-sGRU-Gl2-Cnt [5]. Considering the context information 
by max pooling improves 2.88% MAP and 2.92% MRR 
respectively. �is means that considering the document-level 
context information is helpful for each passage. We observe that 
our C2FRetriever improves 6.17% MAP and 6.82% MRR on the 
BERT base model. �is is because our network considers 
context information from other answers. �e sentences of 
WIKIQA come from consecutive sentences in the wiki page 
paragraphs, so other sentences can also provide rich contextual 
information. Our network so�ly incorporates the document 
context information into the sentence representation. 

Results on the MS MARCO 2.0 dataset 
Table 3 lists the results on the MS MARCO 2.0 dataset. 
Compared with the WIKIQA dataset, each passage may contain 
two or more sentences so the passage length varies over a wide 
range. �e passages of any question are from di�erent 
documents retrieved by a search engine, so the continuity of 
passages is also reduced. �is experiment can better test the 
versatility of our method. Nogueira and Cho �ne-tune the 
BERT base and large models and simply use the matching score 
of QA pairs for ranking [37]. Note that they train their models 
on multiple TPUs with appropriate batch size and sequence 
length, which can help to better adapt the representation to the 
target domain. �is device signi�cantly improves model results.

 Our approach potentially enables the usage of BERT based 
ranking model with lower equipment requirements. However, 

the drawback is that we compare the model performance by 
truncating the passage length. We further train our model by 
considering longer sequences (400 tokens) with multiple GPUs. 

Our model achieves further improvement by 1.7%. We achieve 
0.377 on the development set, which improves 3% from the 
TPU BERT base. �e full ranking method achieves the highest 

i. BERT base is the simple BERT model �ne-tuned on the 
WIKIQA dataset. �e inputs to the model are all QA pairs. 

ii. BERT base + MaxPooling denotes the BERT model add the 
max pooling. We organize the QA pairs according to the 

score, but the drawback is that the training process is a 
multi-stage pipeline. In contrast, our model only uses joint 
training and gets the �nal answer in one pass. �is method 
signi�cantly reduces the problem’s complexity.

 Compared with prior works, our approach incorporates the 
context information of other candidates to enhance the passage 
representation. Each query may have hundreds of retrieved 
passages from a large corpus. Our network e�ectively integrates 
the coarse- and �ne-selection processes by simultaneously 
performing model optimization and passage selection in one 
pass.

Ablation study
Table 4 shows the ablation study of the e�ects of di�erent model 
settings. A �rst observation is that the list context and adaptive 
context information are essential for a good result. Removing 
the List context information slightly degrades performance. 
�is indicates that the document-level context is necessary. 
When we train the pipeline model, the result drops (2.7%). �is 
means that joint training is important for the interaction of 
two-level ranking.  To evaluate the in�uence of cache size, we did extensive 

experiments based on di�erent cache sizes, as shown in Figure 
6. We observe that this model achieves higher performance with 
the cache size=16. As the cache size increases, the performance 
improves as it will allow the model to consider more contextual 
information. When we consider many passages, it can hurt 
performance because it introduces noise, so considering all 
candidates is not always a good option. �e choice of cache size 
is important to the result.

 When we replace context information with MaxPooling, the 
result also drops, but it is better than not considering the 
context. �is means considering document-level context 
information is helpful and using MaxPooling is a 
straightforward choice. When we replace MaxPooling with an 
LSTM encoder, the result slightly drops. �is is because the 
passages may not continuous context model and we have the 
long-term dependency problem because we consider all 
pair-wise interactions. When we remove the �ne ranker, the 
result drops. �is suggests that the two-level selection scheme is 
necessary.

 We further analyze the impact of query/passage length and 
number of passages, as shown in Figure 5. We limit the 
maximum length of queries to n tokens. We �nd that, for the 
same length of passage, longer query lengths generally lead to 
better results. However, for shorter query lengths, speci�cally 
when n < 20, longer passage lengths do not always result in 
improved outcomes. Since the meaning of the query is not well 
encoded, longer passages may contain more misleading 
information. �erefore, it is important to interpret and expand 
queries to improve results. We can conclude that an appropriate 
combination of query and paragraph lengths and model 
selection is crucial for the method.

Conclusions and Future Work
In this paper, we present a novel approach to passage reranking 
that incorporates list-context information to enhance the 
representation of passages across di�erent contexts. Unlike 
previous studies, we recognize the signi�cance of list-context 
information from other candidate passages in addressing the 
challenge of incomplete passage semantics and develop a 
method to integrate it e�ectively. Our model addresses the 
limitation of out-of-memory issues by leveraging a cache policy 
learning approach to represent list context. Additionally, we 
address the challenge of two-stage joint retrieval by integrating 
coarse and �ne rankers in a seamless manner. Our model is 

trained by optimizing all components simultaneously, leading 
to the generation of the �nal answer in a single pass, which 
signi�cantly reduces the complexity of the problem.

 �is paper primarily focuses on addressing the challenge of 
incorporating list-context information from other candidates. 
�e model has the potential to be extended to other cascaded 
tasks, such as information extraction and downstream 
applications, in the future [38].
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Passage reranking is a subtask of question answering and 
machine reading comprehension that involves retrieving one or 
several passages (text options) that can best answer a given 
question [1]. Each passage contains one or several sentences, as 

shown in Table 1. �e most common approach is to model the 
question-answer (QA) pair [2], and then compute various 
similarity measures between obtained representations. 
Finally, we can choose the high-score candidates as the 
answer. 

each passage by considering the context information from other 
candidates can lead to more con�dent results. We use 
“list-context” across di�erent passages to di�erentiate the 
“context” that is o�en discussed in the same QA pair. 
Context-independent representations may limit passage 
semantics when other passages provide useful context 
information for the question. For example, passage A in Table 1 
explains that “cardiovascular disease” refers to heart disease. 
Although passage C does not mention heart disease, we can still 
derive relevant information from passage A.

 Modeling list-context is a nontrivial task. �e �rst challenge 
is to emphasize the comparative and reference information. 
Previous studies have tackled this challenge by utilizing 
hierarchical gated recurrent unit recurrent neural networks 
(GRU RNNs) to consider context information among sentences 
[5]. However, they did not explicitly enhance sentence 
representation by leveraging other candidates. Another 
approach is multi-mention learning, which models multiple 
mentions in a document to answer questions [6]. While these 
methods have made signi�cant contributions, they do not 
explicitly model the context information in the passage list. To 
address this limitation, we propose a list-context attention 
mechanism composed of static attention and adaptive attention. 
�is mechanism injects list context information into the 
passage, allowing each candidate to consider the whole list 
semantics by attending to all the candidates. Additionally, 
adaptive attention enables each passage to adaptively interact 
with other candidates by considering their correlation 
information.

 �e second challenge is the large number of candidate 
passages. It’s di�cult to analyze thousands of passages 
simultaneously without running into technical issues. Previous 
research typically broke down a long list of passages into smaller 
parts and then created a context-independent representation of 
each sentence pair. �is approach o�en relies on a multi-stage 
retrieval architecture [7], where the candidate documents are 
repeatedly narrowed down and reordered. Our paper addresses 
this issue by applying a two-stage retrieval approach to the 
neural model. Unlike previous methods, our model streamlines 
the multi-stage process into a two-level (coarse-to-�ne) model. 
First, it selects a good passage set roughly, and then it �netunes 
the selection by ignoring irrelevant instances that are far from 
the classi�cation hyperplane. By training two layers of model 
parameters jointly, our approach enables them to collaborate 
and interact more e�ectively.

 We introduce a cache policy learning (CPL) algorithm to 
model the two-level selection process end-to-end. �e coarse 
selection sub-process uses a scoring function to rank the 
sentences in the cache memory and dynamically selects the 
top-k scoring sentences for further processing. In addition to 
the coarse selection sub-process, our model also incorporates a 
�ne ranker to further re�ne the representations. Our model 
performs passage reranking and parameter optimization 
simultaneously. We conduct experiments on the WIKIQA and 
MS MARCO 2.0 datasets [8,9]. �e results show the 
e�ectiveness of our approach. �e distinctive properties of this 
paper are as follows:

i. �is paper introduces the idea of enhancing passage 
representation by considering context information from 
other candidates. 

ii. �is paper proposes a list-context attention mechanism, 
composed of static attention and adaptive attention, to 
model list-context information. 

iii. �is paper introduces a C2FRetriever with a cache policy 
learning algorithm, which can select answers from a coarse 
to �ne level in a single pass. �e experimental results 
demonstrate the good performance of the proposed 
method.

Related Work
Previous work employs deep learning models to enhance 
sentence representations and compute their similarity. 
Rocktäschel et al. propose a textual entailment model that 
models word relations between sentences by using 
word-to-word attention on an LSTM-RNN [10]. Severyn and 
Moschitti propose CNNR to consider overlapping words to 
encode relational information between question and answer 
[2]. Yin et al. propose 3 attention methods on a CNN model 
(ABCNN) to encode mutual interactions between sentences 
[11]. Miller et al. propose key-value memory networks 
(KV-MemeNN) to select answers by using key-value structured 
facts in the model memory [12]. Wang et al. propose a bilateral 
multi-view matching (BiMPM) model [13], which utilizes an 
attention mechanism to model the mutual interaction of 
sentences at di�erent scales. Bachrach et al. apply two attention 
operations to capture more word-level contextual information, 
but their work still focuses on enhancing sentence-pair 
representations without considering list-level contextual 
information [14]. A work close to ours is the hierarchical 
GRU-RNN [5], which is used to model word-level and 
sentence-level matching and provide a kind of contextual 
information. However, their approach does not explicitly 
enhance sentence representations by using contextual 
information from other candidates. Our approach incorporates 
list-context information to augment sentence representation. 
Ran et al. propose an option comparison network (OCN) for 
multiple choice reading comprehension (MCRC) [15].

 Guo et al. propose the deep dependent matching model 
(DRMM), which introduces a histogram pooling technique to 
summarize the translation matrix [16]. Xiong et al. propose 
KNRM, which uses a kernel pooling layer to so�ly compute the 
frequency of word pairs at di�erent similarity levels [17]. 
MARCO’s o�cial baseline uses two separate DNNs to model 
query-document relevance using local and distributed 
representations, respectively [18]. Conv-KNRM enhances 
KNRM by utilizing CNN to compose n-gram embeddings from 
word embeddings and cross-matched n-grams of di�erent 
lengths [19]. SAN + BERT base maintains a state and iteratively 
re�nes its predictions [20].

 Previous work mainly uses a multi-stage retrieval 
architecture in web search systems [7]. A set of candidate 
documents is generated using a series of increasingly expensive 
machine-learning techniques. present a method for optimizing 
cascaded ranking models [21]. BERT is a pre-trained language 
model based on the bidirectional Transformer architecture 
[22-26]. It has been demonstrated to be highly e�ective in 
generating rich representations for pairs of sentences. BERT 
o�ers a means to directly model the interactions between 
passages. Sentence-BERT (SBERT) is an improved model based 
on BERT and RoBERTa that is used to e�ciently calculate the 
similarity between sentences [27]. It is trained through siamese 

 Recent studies have improved the quality of general text 
embeddings for representing passages. BAAI general 
embedding (BGE) utilizes the RetroMAE approach for 
pre-training and employs contrastive learning for �ne-tuning 
[3]. Moreover, online services such as OpenAI’s text embedding 
and Cohere-V3 generate text embeddings through their API 
[4]. While previous work has o�en focused on enriching text 
embeddings or enhancing the interaction between 
question-answer pairs, they have rarely considered the in�uence 

of other candidates. As a result, the relationships between 
candidates have not been fully explored. When humans select 
an answer, they consider not only whether each individual 
passage aligns with the question but also the presence of 
superior alternatives. Especially when the passages are derived 
from the same document or related documents, their 
semantics are o�en incomplete, and other candidates may 
contain valuable information that can supplement and 
interpret the current passage. Enriching the representation of 

and triplet network architecture, making the representation of 
sentences in vector space more suitable for cosine-similarity 
calculations. KEPLER proposes a method to jointly optimize 
knowledge embedding (KE) and pre-trained language model 
(PLM) [28]. �is means that the model simultaneously learns 
how to extract relational facts from the knowledge graph and 
how to understand language patterns from text during training.

 General text embedding techniques are commonly 
employed for web search and question answering, and they are 
also used to enhance the capabilities of large language models 
[1,29,30]. BGE adopts the RetroMAE method for pre-training 
and leverages contrastive learning for �ne-tuning [3]. OpenAI 
text embedding produces high-quality text and code vector 
representations through contrastive pre-training on large 
amounts of unsupervised data [4]. Cohere-v31  improves the 
quality of text embeddings by evaluating how well the query 
matches the document’s topic and assessing the overall quality 
of the content. However, when the document is segmented, it is 
easy to cause semantic incompleteness. �e above 
state-of-the-art method only enhances the text embeddings of a 
single passage and cannot obtain supplementary semantic 
information from other passages belonging to the same 
document. Our method provides complementary information 
between passages by modeling the relationship between 
passages in the same document. Our C2FRetriever is trained in 
an end-to-end manner so that the parameters of the coarse 
ranker and �ne ranker can be jointly optimized for better 
collaboration between the two levels.
1https://huggingface.co/Cohere  

Approach
Suppose we have a question Q with l tokens {                           }, 
and a candidate answer set O with n passages {                       }. n 
is the number of passages that can vary over a wide range 
(1~1000). Each passage    contains one or several sentences 
(passage) which consists of      tokens {                          }. �e label 
yi ∈ {0, 1} with 1 denotes a positive answer and 0 otherwise. �e 
goal of the model is to score each passage based on how well it 
answers the question and then rank the passages based on the 
score.

 Our main e�ort lies in designing a deep learning architecture 
that enhances representations by considering the contextual 
information of other candidates. Its main building block has 
two layers, the coarse ranker and the �ne ranker. In the 
following, we �rst describe the two layers and then describe the 
training algorithm.

Coarse ranker
�e architecture of the coarse ranker is shown in the lower part 
of Figure 1. �is layer aims to �lter some answers that are 
irrelevant to the given question to generate an intermediate set 
for performing �ne selection. We use a BERT model to generate 
representations of QA pairs and a single-layer neural network to 
compute matching scores [22]. 

Passage Oi is concatenated with question Q to form a complete 
sequence, denoted as ⟨[CLS]; Q; [SEP]; Oi; [SEP]⟩.

    
where              is the QA representation. Fbert denotes the 
network de�ned in Devlin et al. [22]. �e representations are 

then projected to matching scores using a single layer neural 
network.

Where W^c∈ R^(d and b^c is a scalar. σ is the sigmoid 
activation function. �is layer takes all QA pairs as input          
[(Q, O1), (Q, O2), ..., (Q, O   ], and then the model assigns a 
score to each candidate.

 Modeling all candidates directly will result in 
out-of-memory issues due to the large amount of list-context 
information that needs to be processed simultaneously. �e 
model parameter size is very large, and the gradient state 
retained during the optimization process will double the 
memory usage. To solve this problem, we propose using 
di�erent paths and caching mechanisms. Each path represents a 
di�erent function that processes the data in a way that reduces 
memory usage. �e coarse ranker creates a cache used to store 
the top-k passages it has encountered previously. According to 
p_, passages are dynamically ranked through path S1, which 
contains the function listed below.

where h0 is the initial state of the empty cache. ht is the cache 
state a�er t step update and contains the selected passages. K 
denotes the ranking function.

 Prior early-stage models typically process all the candidates 

Static attention
To capture and compose the context semantics from the answer 
list, our model uses an attention mechanism which achieves the 
best performance in di�erent alternatives to obtain the 
list-context representation [31,32]. �is method extracts 
informative passages and aggregates their representations to 
form the list-context representation V. �is method �rst 
measures the weight of each passage in the list context. 

where Cl ∈Rd is the context vector that can be jointly trained. 
�en, this model computes the normalized weight of each 
passage through a so�max function and aggregates these 
representations.

where max(u) gets the max value of [u_0, u_1, ..., u] where k is 
the candidate number. �is operation encodes the list context 
into a vector which summarizes the main semantics of this list. 
�is allows the model to so�ly consider all candidates in the 
entire list.

Where V  is the list-context representation.

Adaptive attention
While the static attention supplements the list-context 
information for each passage, V  is the same for all candidates 
and does not consider the question. Ideally, we would like to 
overcome the above two problems, by considering list-context 
information and adaptively incorporating the context 
information for each passage based on the question. Our model 
resolves this problem by using adaptive attention which injects 
the correlation information of passages into passage 
representation directly, as shown in Figure 2. �is method �rst 
computes the correlation weight between these passages by 
considering the semantic similarity of the QA pair and the 
list-context information. 

       
�en, this method obtains normalized correlation weights 
through a so�max function.
 

�e adaptive context representation is obtained by calculating 
the weighted sum of the passage representations.

where Z is the adaptive context of i-th passage. By using this 
attention scheme, each passage has a set of adaptive correlation 
weights with other candidates. �is correlation information can 
aggregate the passage representations �exibly. �is interaction 
operation encodes the correlation between candidates while 
also considering the list-context information and question.
�en, the ranking score of the options in the cache can be 
calculated as below.

Where f))�R^(1×τ) and (f))are linear composition matrix and 
bias. τ is vector dimension. [;] denotes the concatenation 
operation. (f)) is the score vector.

and then retain the top-k candidates which are also written to 
disk. Di�erent from them, we incrementally maintain the cache 
memory which only retains the top-k scoring QA pairs. k is a 
hyperparameter. �en, residual path S2 is used to connect the 
QA representation to the �ne ranker, and it contains the 
function of the equation (4).

Where (c) ) represents the    is the matrix 
for top-k QA pairs. (f) denotes the �ne ranker. C is the selection 
function.

 �e residual path S3 indicates that it is used to transfer the 
top-k paragraphs selected in the coarse ranker to the �ne ranker 
layer and generate a vector representation of the passage. Unlike 
the vector representation in the coarse ranker, it only contains 
the content of the passage, not the question. �ese passages are 
derived from the top-k candidate paragraphs to generate list 
context information. �e sorting result is the result of the 
borrowed coarse ranker without repeated calculations. �is 
path can be described by equation (5). Finally, the selected 
passages and representations in the cache are sent to the �ne 
ranker.

Where (f)) is the matrix for top-k passages.(c) is the 
representation for i-th passage, which can be calculated by 
equation (6).

Fine ranker
�e inputs to the �ne ranker are vectors of top-k QA pairs ((f)) 
and top-k passages (f)). �e architecture of the �ne ranker is 
depicted in Figure 2. It incorporates a list-context attention 
mechanism that combines both static and adaptive attention. 

A�er getting the top-k sentences, this model will carry out the 
�ne selection process as described in the Fine Ranker 
subsection. �is model is trained using the log loss of two-level 
selection as shown below.

where yj is the label of the j-th passage. (c)  and (f) are the 
predicted score of j-th passage in the coarse and �ne rankers 
respectively. �en, these two layers are jointly trained to �nd a 
balance between passage selection and joint parameter 
optimization, as shown below.

where λ (We set λ=1.0) is a hyper-parameter to weigh the 
in�uence of the �ne ranker.

 �e asymptotic complexity is described as follows. Assuming 
that all hidden dimensions are ρ, the complexity of matrix (ρ×
ρ)-vector (ρ×1) multiplication is O(ρ2). BERT takes O(Cber). 
For the coarse ranker, calculating the BERT representation of n 
QA pairs and passages takes O(nCber). To maintain the cache, 
we need a top-k sort operation which takes O(nk) at the worst 

case. For the �ne ranker, the list context information requires 
O(ρ2). �e adaptive context information requires O(kρ2). 
�erefore, the total complexity is O(〖nC〗_bert). For BERT, it 
mainly includes matrix-vector multiplication, so the optimized 
calculation requires O(mlρ2). where m is the number of 
matrix-vector multiplications, and l is the sequence length. �e 
computational complexity of this model is still close to that of 
BERT.

Experiments
Datasets
WIKIQIA

�is is a standard open-domain QA dataset. �e questions are 
sampled from the Bing query logs, and the candidate sentences 
are extracted from paragraphs of the associated Wiki pages. 
�is dataset includes 3,047 questions and 29,258 sentences [8], 
where 1,473 candidate passages are labeled as answer sentences. 
Each passage contains only one sentence. We use the standard 
data splits in experiments. Figure 3 visualizes the data 
distribution of this dataset. �e x- and y- axes denote the 
number of candidate sentences and the number of questions 
respectively. �e candidate number of each question ranges 
from 1 to 30 and the average candidate number is 9.6. �e 
average length of question and answer are 6.5 and 25.1 words 
respectively.

Training algorithm
Prior multi-stage retrieval methods typically cascade di�erent 
machine learning techniques. Di�erent from the cascaded 
ranking architecture, we introduce the CPL algorithm to train a 
two-level network for the two-stage retrieval problem. �is 
algorithm performs ranking operations during the training 
process and can optimize the two-stage retrieval processes 
jointly.

 As shown in Algorithm 1, in line 1, this model �rst initializes 
the cache memory. �en, during model training, this model 
adds the ground truth answer to the memory, in line 2. In lines 
3-12, this model maintains the cache memory by coarsely 

selecting the top-k candidates. In lines 4-5, this model calculates 
the matching score based on the BERT representation. If the 
current candidate is a positive answer, its index j, matching 
score (c))  and representation pBert will be added to the cache, 
in line 7. If the current candidate does not match this question, 
this model will maintain the top-k candidates based on their 
scores. In line 13, this model merges the cache memory. In line 
14, this model incorporates the context information of other 
sentences in the �ne ranker to augment the passage 
representation. Finally, this model calculates the loss values of 
coarse and �ne rankers. �en, we can update the model 
parameters by backpropagation using an optimization 
algorithm.

MS MARCO 2.02 

�is is a large-scale machine reading comprehension dataset 
sampled from Bing’s search query logs [9]. We choose the 
dataset for the passage re-ranking task. Given a set of 1000 
passages that have been retrieved using the BM25 algorithm, 
re-rank these passages on their relevance to the query. �is 
dataset was the primary focus of the 2020 and 2019 TREC Deep 
Learning Track. It has also been utilized as a teaching resource 
for the ACM SIGIR/SIGKDD AFIRM Summer School, which 
o�ers courses on Machine Learning for Data Mining and 
Search. Figure 4 visualizes the data distribution of this dataset. 

�e x- and y- axes denote the number of candidate passages and 
the number of questions respectively. �e training set contains 
398,792 questions. �e number of passages in each question 
ranges from 2 to 732. �e question length ranges from 1 to 38 
words. �e passage length ranges from 1 to 362 words. Each 
question average has 100.7 passage candidates. On average, each 
question has one relevant passage. �e development set and test 
set contain 6,980 and 6,837 questions respectively. Each 
question has 1000 passages candidates retrieved with BM25 
from the MS MARCO corpus. In the test set, the question 
length ranges from 2 to 30 words. �e passage length ranges 
from 1 to 287 words.

Hyper-parameters
�is paper employs the BERT-base-uncased model to generate 
representations for sentence pairs. We utilize the output of the 
“[CLS]” token from the �nal layer of BERT as a representation 
of the QA pair. �e projection layer employs a single-layer 
neural network with the hyperbolic tangent activation function 
to generate 200-dimensional vector representations. We use 40 
tokens as the maximum length for questions and 200 tokens for 
answers. �e cache size is set to 15.

 �e AdamW optimization algorithm is used to update the 
model parameters [33]. We �ne-tune the BERT-base-uncased 

model on the passage reranking datasets. �e models run on an 
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (Mem: 330G) 
& 8 Tesla V100s and an Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz (Mem: 256) & 8 RTX 2080Tis.

Evaluation
�is paper uses mean average precision (MAP) and mean 
reciprocal rank (MRR) to evaluate the performance of the 
model. For the MS MARCO 2.0 dataset, we use the o�cial 
script to evaluate our results. �is script calculates the MRR@10 
which considers only the top 10 passages.

Results on the WIKIQA dataset
Table 2 presents the experimental result. Most baseline deep 
learning models typically design e�ective feature extraction 
schemes to better derive features from QA pairs for calculating 
question-answer similarity. �e BERT model has a similar goal 
of mapping a QA pair to a valid representation. �e proposed 
models are the following: 

document and consider all the sentences. Note that this 
setting cannot tackle a situation that has unlimited 
candidates. �e max pooling extracts the document 
information. Because the passage number is less than 30, so 
we can get the max pooling. 

iii. C2Retriever is the proposed model with list and adaptive 
context information.

 We observe that our model outperforms the BERT base and 
improves 1.93% MAP and 0.71% MRR respectively to 
wGRU-sGRU-Gl2-Cnt [5]. Considering the context information 
by max pooling improves 2.88% MAP and 2.92% MRR 
respectively. �is means that considering the document-level 
context information is helpful for each passage. We observe that 
our C2FRetriever improves 6.17% MAP and 6.82% MRR on the 
BERT base model. �is is because our network considers 
context information from other answers. �e sentences of 
WIKIQA come from consecutive sentences in the wiki page 
paragraphs, so other sentences can also provide rich contextual 
information. Our network so�ly incorporates the document 
context information into the sentence representation. 

Results on the MS MARCO 2.0 dataset 
Table 3 lists the results on the MS MARCO 2.0 dataset. 
Compared with the WIKIQA dataset, each passage may contain 
two or more sentences so the passage length varies over a wide 
range. �e passages of any question are from di�erent 
documents retrieved by a search engine, so the continuity of 
passages is also reduced. �is experiment can better test the 
versatility of our method. Nogueira and Cho �ne-tune the 
BERT base and large models and simply use the matching score 
of QA pairs for ranking [37]. Note that they train their models 
on multiple TPUs with appropriate batch size and sequence 
length, which can help to better adapt the representation to the 
target domain. �is device signi�cantly improves model results.

 Our approach potentially enables the usage of BERT based 
ranking model with lower equipment requirements. However, 

the drawback is that we compare the model performance by 
truncating the passage length. We further train our model by 
considering longer sequences (400 tokens) with multiple GPUs. 

Our model achieves further improvement by 1.7%. We achieve 
0.377 on the development set, which improves 3% from the 
TPU BERT base. �e full ranking method achieves the highest 

i. BERT base is the simple BERT model �ne-tuned on the 
WIKIQA dataset. �e inputs to the model are all QA pairs. 

ii. BERT base + MaxPooling denotes the BERT model add the 
max pooling. We organize the QA pairs according to the 

score, but the drawback is that the training process is a 
multi-stage pipeline. In contrast, our model only uses joint 
training and gets the �nal answer in one pass. �is method 
signi�cantly reduces the problem’s complexity.

 Compared with prior works, our approach incorporates the 
context information of other candidates to enhance the passage 
representation. Each query may have hundreds of retrieved 
passages from a large corpus. Our network e�ectively integrates 
the coarse- and �ne-selection processes by simultaneously 
performing model optimization and passage selection in one 
pass.

Ablation study
Table 4 shows the ablation study of the e�ects of di�erent model 
settings. A �rst observation is that the list context and adaptive 
context information are essential for a good result. Removing 
the List context information slightly degrades performance. 
�is indicates that the document-level context is necessary. 
When we train the pipeline model, the result drops (2.7%). �is 
means that joint training is important for the interaction of 
two-level ranking.  To evaluate the in�uence of cache size, we did extensive 

experiments based on di�erent cache sizes, as shown in Figure 
6. We observe that this model achieves higher performance with 
the cache size=16. As the cache size increases, the performance 
improves as it will allow the model to consider more contextual 
information. When we consider many passages, it can hurt 
performance because it introduces noise, so considering all 
candidates is not always a good option. �e choice of cache size 
is important to the result.

 When we replace context information with MaxPooling, the 
result also drops, but it is better than not considering the 
context. �is means considering document-level context 
information is helpful and using MaxPooling is a 
straightforward choice. When we replace MaxPooling with an 
LSTM encoder, the result slightly drops. �is is because the 
passages may not continuous context model and we have the 
long-term dependency problem because we consider all 
pair-wise interactions. When we remove the �ne ranker, the 
result drops. �is suggests that the two-level selection scheme is 
necessary.

 We further analyze the impact of query/passage length and 
number of passages, as shown in Figure 5. We limit the 
maximum length of queries to n tokens. We �nd that, for the 
same length of passage, longer query lengths generally lead to 
better results. However, for shorter query lengths, speci�cally 
when n < 20, longer passage lengths do not always result in 
improved outcomes. Since the meaning of the query is not well 
encoded, longer passages may contain more misleading 
information. �erefore, it is important to interpret and expand 
queries to improve results. We can conclude that an appropriate 
combination of query and paragraph lengths and model 
selection is crucial for the method.

Conclusions and Future Work
In this paper, we present a novel approach to passage reranking 
that incorporates list-context information to enhance the 
representation of passages across di�erent contexts. Unlike 
previous studies, we recognize the signi�cance of list-context 
information from other candidate passages in addressing the 
challenge of incomplete passage semantics and develop a 
method to integrate it e�ectively. Our model addresses the 
limitation of out-of-memory issues by leveraging a cache policy 
learning approach to represent list context. Additionally, we 
address the challenge of two-stage joint retrieval by integrating 
coarse and �ne rankers in a seamless manner. Our model is 

trained by optimizing all components simultaneously, leading 
to the generation of the �nal answer in a single pass, which 
signi�cantly reduces the complexity of the problem.

 �is paper primarily focuses on addressing the challenge of 
incorporating list-context information from other candidates. 
�e model has the potential to be extended to other cascaded 
tasks, such as information extraction and downstream 
applications, in the future [38].
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Passage reranking is a subtask of question answering and 
machine reading comprehension that involves retrieving one or 
several passages (text options) that can best answer a given 
question [1]. Each passage contains one or several sentences, as 

shown in Table 1. �e most common approach is to model the 
question-answer (QA) pair [2], and then compute various 
similarity measures between obtained representations. 
Finally, we can choose the high-score candidates as the 
answer. 

each passage by considering the context information from other 
candidates can lead to more con�dent results. We use 
“list-context” across di�erent passages to di�erentiate the 
“context” that is o�en discussed in the same QA pair. 
Context-independent representations may limit passage 
semantics when other passages provide useful context 
information for the question. For example, passage A in Table 1 
explains that “cardiovascular disease” refers to heart disease. 
Although passage C does not mention heart disease, we can still 
derive relevant information from passage A.

 Modeling list-context is a nontrivial task. �e �rst challenge 
is to emphasize the comparative and reference information. 
Previous studies have tackled this challenge by utilizing 
hierarchical gated recurrent unit recurrent neural networks 
(GRU RNNs) to consider context information among sentences 
[5]. However, they did not explicitly enhance sentence 
representation by leveraging other candidates. Another 
approach is multi-mention learning, which models multiple 
mentions in a document to answer questions [6]. While these 
methods have made signi�cant contributions, they do not 
explicitly model the context information in the passage list. To 
address this limitation, we propose a list-context attention 
mechanism composed of static attention and adaptive attention. 
�is mechanism injects list context information into the 
passage, allowing each candidate to consider the whole list 
semantics by attending to all the candidates. Additionally, 
adaptive attention enables each passage to adaptively interact 
with other candidates by considering their correlation 
information.

 �e second challenge is the large number of candidate 
passages. It’s di�cult to analyze thousands of passages 
simultaneously without running into technical issues. Previous 
research typically broke down a long list of passages into smaller 
parts and then created a context-independent representation of 
each sentence pair. �is approach o�en relies on a multi-stage 
retrieval architecture [7], where the candidate documents are 
repeatedly narrowed down and reordered. Our paper addresses 
this issue by applying a two-stage retrieval approach to the 
neural model. Unlike previous methods, our model streamlines 
the multi-stage process into a two-level (coarse-to-�ne) model. 
First, it selects a good passage set roughly, and then it �netunes 
the selection by ignoring irrelevant instances that are far from 
the classi�cation hyperplane. By training two layers of model 
parameters jointly, our approach enables them to collaborate 
and interact more e�ectively.

 We introduce a cache policy learning (CPL) algorithm to 
model the two-level selection process end-to-end. �e coarse 
selection sub-process uses a scoring function to rank the 
sentences in the cache memory and dynamically selects the 
top-k scoring sentences for further processing. In addition to 
the coarse selection sub-process, our model also incorporates a 
�ne ranker to further re�ne the representations. Our model 
performs passage reranking and parameter optimization 
simultaneously. We conduct experiments on the WIKIQA and 
MS MARCO 2.0 datasets [8,9]. �e results show the 
e�ectiveness of our approach. �e distinctive properties of this 
paper are as follows:

i. �is paper introduces the idea of enhancing passage 
representation by considering context information from 
other candidates. 

ii. �is paper proposes a list-context attention mechanism, 
composed of static attention and adaptive attention, to 
model list-context information. 

iii. �is paper introduces a C2FRetriever with a cache policy 
learning algorithm, which can select answers from a coarse 
to �ne level in a single pass. �e experimental results 
demonstrate the good performance of the proposed 
method.

Related Work
Previous work employs deep learning models to enhance 
sentence representations and compute their similarity. 
Rocktäschel et al. propose a textual entailment model that 
models word relations between sentences by using 
word-to-word attention on an LSTM-RNN [10]. Severyn and 
Moschitti propose CNNR to consider overlapping words to 
encode relational information between question and answer 
[2]. Yin et al. propose 3 attention methods on a CNN model 
(ABCNN) to encode mutual interactions between sentences 
[11]. Miller et al. propose key-value memory networks 
(KV-MemeNN) to select answers by using key-value structured 
facts in the model memory [12]. Wang et al. propose a bilateral 
multi-view matching (BiMPM) model [13], which utilizes an 
attention mechanism to model the mutual interaction of 
sentences at di�erent scales. Bachrach et al. apply two attention 
operations to capture more word-level contextual information, 
but their work still focuses on enhancing sentence-pair 
representations without considering list-level contextual 
information [14]. A work close to ours is the hierarchical 
GRU-RNN [5], which is used to model word-level and 
sentence-level matching and provide a kind of contextual 
information. However, their approach does not explicitly 
enhance sentence representations by using contextual 
information from other candidates. Our approach incorporates 
list-context information to augment sentence representation. 
Ran et al. propose an option comparison network (OCN) for 
multiple choice reading comprehension (MCRC) [15].

 Guo et al. propose the deep dependent matching model 
(DRMM), which introduces a histogram pooling technique to 
summarize the translation matrix [16]. Xiong et al. propose 
KNRM, which uses a kernel pooling layer to so�ly compute the 
frequency of word pairs at di�erent similarity levels [17]. 
MARCO’s o�cial baseline uses two separate DNNs to model 
query-document relevance using local and distributed 
representations, respectively [18]. Conv-KNRM enhances 
KNRM by utilizing CNN to compose n-gram embeddings from 
word embeddings and cross-matched n-grams of di�erent 
lengths [19]. SAN + BERT base maintains a state and iteratively 
re�nes its predictions [20].

 Previous work mainly uses a multi-stage retrieval 
architecture in web search systems [7]. A set of candidate 
documents is generated using a series of increasingly expensive 
machine-learning techniques. present a method for optimizing 
cascaded ranking models [21]. BERT is a pre-trained language 
model based on the bidirectional Transformer architecture 
[22-26]. It has been demonstrated to be highly e�ective in 
generating rich representations for pairs of sentences. BERT 
o�ers a means to directly model the interactions between 
passages. Sentence-BERT (SBERT) is an improved model based 
on BERT and RoBERTa that is used to e�ciently calculate the 
similarity between sentences [27]. It is trained through siamese 

 Recent studies have improved the quality of general text 
embeddings for representing passages. BAAI general 
embedding (BGE) utilizes the RetroMAE approach for 
pre-training and employs contrastive learning for �ne-tuning 
[3]. Moreover, online services such as OpenAI’s text embedding 
and Cohere-V3 generate text embeddings through their API 
[4]. While previous work has o�en focused on enriching text 
embeddings or enhancing the interaction between 
question-answer pairs, they have rarely considered the in�uence 

of other candidates. As a result, the relationships between 
candidates have not been fully explored. When humans select 
an answer, they consider not only whether each individual 
passage aligns with the question but also the presence of 
superior alternatives. Especially when the passages are derived 
from the same document or related documents, their 
semantics are o�en incomplete, and other candidates may 
contain valuable information that can supplement and 
interpret the current passage. Enriching the representation of 

and triplet network architecture, making the representation of 
sentences in vector space more suitable for cosine-similarity 
calculations. KEPLER proposes a method to jointly optimize 
knowledge embedding (KE) and pre-trained language model 
(PLM) [28]. �is means that the model simultaneously learns 
how to extract relational facts from the knowledge graph and 
how to understand language patterns from text during training.

 General text embedding techniques are commonly 
employed for web search and question answering, and they are 
also used to enhance the capabilities of large language models 
[1,29,30]. BGE adopts the RetroMAE method for pre-training 
and leverages contrastive learning for �ne-tuning [3]. OpenAI 
text embedding produces high-quality text and code vector 
representations through contrastive pre-training on large 
amounts of unsupervised data [4]. Cohere-v31  improves the 
quality of text embeddings by evaluating how well the query 
matches the document’s topic and assessing the overall quality 
of the content. However, when the document is segmented, it is 
easy to cause semantic incompleteness. �e above 
state-of-the-art method only enhances the text embeddings of a 
single passage and cannot obtain supplementary semantic 
information from other passages belonging to the same 
document. Our method provides complementary information 
between passages by modeling the relationship between 
passages in the same document. Our C2FRetriever is trained in 
an end-to-end manner so that the parameters of the coarse 
ranker and �ne ranker can be jointly optimized for better 
collaboration between the two levels.
1https://huggingface.co/Cohere  

Approach
Suppose we have a question Q with l tokens {                           }, 
and a candidate answer set O with n passages {                       }. n 
is the number of passages that can vary over a wide range 
(1~1000). Each passage    contains one or several sentences 
(passage) which consists of      tokens {                          }. �e label 
yi ∈ {0, 1} with 1 denotes a positive answer and 0 otherwise. �e 
goal of the model is to score each passage based on how well it 
answers the question and then rank the passages based on the 
score.

 Our main e�ort lies in designing a deep learning architecture 
that enhances representations by considering the contextual 
information of other candidates. Its main building block has 
two layers, the coarse ranker and the �ne ranker. In the 
following, we �rst describe the two layers and then describe the 
training algorithm.

Coarse ranker
�e architecture of the coarse ranker is shown in the lower part 
of Figure 1. �is layer aims to �lter some answers that are 
irrelevant to the given question to generate an intermediate set 
for performing �ne selection. We use a BERT model to generate 
representations of QA pairs and a single-layer neural network to 
compute matching scores [22]. 

Passage Oi is concatenated with question Q to form a complete 
sequence, denoted as ⟨[CLS]; Q; [SEP]; Oi; [SEP]⟩.

    
where              is the QA representation. Fbert denotes the 
network de�ned in Devlin et al. [22]. �e representations are 

then projected to matching scores using a single layer neural 
network.

Where W^c∈ R^(d and b^c is a scalar. σ is the sigmoid 
activation function. �is layer takes all QA pairs as input          
[(Q, O1), (Q, O2), ..., (Q, O   ], and then the model assigns a 
score to each candidate.

 Modeling all candidates directly will result in 
out-of-memory issues due to the large amount of list-context 
information that needs to be processed simultaneously. �e 
model parameter size is very large, and the gradient state 
retained during the optimization process will double the 
memory usage. To solve this problem, we propose using 
di�erent paths and caching mechanisms. Each path represents a 
di�erent function that processes the data in a way that reduces 
memory usage. �e coarse ranker creates a cache used to store 
the top-k passages it has encountered previously. According to 
p_, passages are dynamically ranked through path S1, which 
contains the function listed below.

where h0 is the initial state of the empty cache. ht is the cache 
state a�er t step update and contains the selected passages. K 
denotes the ranking function.

 Prior early-stage models typically process all the candidates 

Figure 1. Schematic diagram of the model structure.

Fbert Q Oi (1)

(2)

(3)

σ

Static attention
To capture and compose the context semantics from the answer 
list, our model uses an attention mechanism which achieves the 
best performance in di�erent alternatives to obtain the 
list-context representation [31,32]. �is method extracts 
informative passages and aggregates their representations to 
form the list-context representation V. �is method �rst 
measures the weight of each passage in the list context. 

where Cl ∈Rd is the context vector that can be jointly trained. 
�en, this model computes the normalized weight of each 
passage through a so�max function and aggregates these 
representations.

where max(u) gets the max value of [u_0, u_1, ..., u] where k is 
the candidate number. �is operation encodes the list context 
into a vector which summarizes the main semantics of this list. 
�is allows the model to so�ly consider all candidates in the 
entire list.

Where V  is the list-context representation.

Adaptive attention
While the static attention supplements the list-context 
information for each passage, V  is the same for all candidates 
and does not consider the question. Ideally, we would like to 
overcome the above two problems, by considering list-context 
information and adaptively incorporating the context 
information for each passage based on the question. Our model 
resolves this problem by using adaptive attention which injects 
the correlation information of passages into passage 
representation directly, as shown in Figure 2. �is method �rst 
computes the correlation weight between these passages by 
considering the semantic similarity of the QA pair and the 
list-context information. 

       
�en, this method obtains normalized correlation weights 
through a so�max function.
 

�e adaptive context representation is obtained by calculating 
the weighted sum of the passage representations.

where Z is the adaptive context of i-th passage. By using this 
attention scheme, each passage has a set of adaptive correlation 
weights with other candidates. �is correlation information can 
aggregate the passage representations �exibly. �is interaction 
operation encodes the correlation between candidates while 
also considering the list-context information and question.
�en, the ranking score of the options in the cache can be 
calculated as below.

Where f))�R^(1×τ) and (f))are linear composition matrix and 
bias. τ is vector dimension. [;] denotes the concatenation 
operation. (f)) is the score vector.

and then retain the top-k candidates which are also written to 
disk. Di�erent from them, we incrementally maintain the cache 
memory which only retains the top-k scoring QA pairs. k is a 
hyperparameter. �en, residual path S2 is used to connect the 
QA representation to the �ne ranker, and it contains the 
function of the equation (4).

Where (c) ) represents the    is the matrix 
for top-k QA pairs. (f) denotes the �ne ranker. C is the selection 
function.

 �e residual path S3 indicates that it is used to transfer the 
top-k paragraphs selected in the coarse ranker to the �ne ranker 
layer and generate a vector representation of the passage. Unlike 
the vector representation in the coarse ranker, it only contains 
the content of the passage, not the question. �ese passages are 
derived from the top-k candidate paragraphs to generate list 
context information. �e sorting result is the result of the 
borrowed coarse ranker without repeated calculations. �is 
path can be described by equation (5). Finally, the selected 
passages and representations in the cache are sent to the �ne 
ranker.

Where (f)) is the matrix for top-k passages.(c) is the 
representation for i-th passage, which can be calculated by 
equation (6).

Fine ranker
�e inputs to the �ne ranker are vectors of top-k QA pairs ((f)) 
and top-k passages (f)). �e architecture of the �ne ranker is 
depicted in Figure 2. It incorporates a list-context attention 
mechanism that combines both static and adaptive attention. 

A�er getting the top-k sentences, this model will carry out the 
�ne selection process as described in the Fine Ranker 
subsection. �is model is trained using the log loss of two-level 
selection as shown below.

where yj is the label of the j-th passage. (c)  and (f) are the 
predicted score of j-th passage in the coarse and �ne rankers 
respectively. �en, these two layers are jointly trained to �nd a 
balance between passage selection and joint parameter 
optimization, as shown below.

where λ (We set λ=1.0) is a hyper-parameter to weigh the 
in�uence of the �ne ranker.

 �e asymptotic complexity is described as follows. Assuming 
that all hidden dimensions are ρ, the complexity of matrix (ρ×
ρ)-vector (ρ×1) multiplication is O(ρ2). BERT takes O(Cber). 
For the coarse ranker, calculating the BERT representation of n 
QA pairs and passages takes O(nCber). To maintain the cache, 
we need a top-k sort operation which takes O(nk) at the worst 

case. For the �ne ranker, the list context information requires 
O(ρ2). �e adaptive context information requires O(kρ2). 
�erefore, the total complexity is O(〖nC〗_bert). For BERT, it 
mainly includes matrix-vector multiplication, so the optimized 
calculation requires O(mlρ2). where m is the number of 
matrix-vector multiplications, and l is the sequence length. �e 
computational complexity of this model is still close to that of 
BERT.

Experiments
Datasets
WIKIQIA

�is is a standard open-domain QA dataset. �e questions are 
sampled from the Bing query logs, and the candidate sentences 
are extracted from paragraphs of the associated Wiki pages. 
�is dataset includes 3,047 questions and 29,258 sentences [8], 
where 1,473 candidate passages are labeled as answer sentences. 
Each passage contains only one sentence. We use the standard 
data splits in experiments. Figure 3 visualizes the data 
distribution of this dataset. �e x- and y- axes denote the 
number of candidate sentences and the number of questions 
respectively. �e candidate number of each question ranges 
from 1 to 30 and the average candidate number is 9.6. �e 
average length of question and answer are 6.5 and 25.1 words 
respectively.

Training algorithm
Prior multi-stage retrieval methods typically cascade di�erent 
machine learning techniques. Di�erent from the cascaded 
ranking architecture, we introduce the CPL algorithm to train a 
two-level network for the two-stage retrieval problem. �is 
algorithm performs ranking operations during the training 
process and can optimize the two-stage retrieval processes 
jointly.

 As shown in Algorithm 1, in line 1, this model �rst initializes 
the cache memory. �en, during model training, this model 
adds the ground truth answer to the memory, in line 2. In lines 
3-12, this model maintains the cache memory by coarsely 

selecting the top-k candidates. In lines 4-5, this model calculates 
the matching score based on the BERT representation. If the 
current candidate is a positive answer, its index j, matching 
score (c))  and representation pBert will be added to the cache, 
in line 7. If the current candidate does not match this question, 
this model will maintain the top-k candidates based on their 
scores. In line 13, this model merges the cache memory. In line 
14, this model incorporates the context information of other 
sentences in the �ne ranker to augment the passage 
representation. Finally, this model calculates the loss values of 
coarse and �ne rankers. �en, we can update the model 
parameters by backpropagation using an optimization 
algorithm.

MS MARCO 2.02 

�is is a large-scale machine reading comprehension dataset 
sampled from Bing’s search query logs [9]. We choose the 
dataset for the passage re-ranking task. Given a set of 1000 
passages that have been retrieved using the BM25 algorithm, 
re-rank these passages on their relevance to the query. �is 
dataset was the primary focus of the 2020 and 2019 TREC Deep 
Learning Track. It has also been utilized as a teaching resource 
for the ACM SIGIR/SIGKDD AFIRM Summer School, which 
o�ers courses on Machine Learning for Data Mining and 
Search. Figure 4 visualizes the data distribution of this dataset. 

�e x- and y- axes denote the number of candidate passages and 
the number of questions respectively. �e training set contains 
398,792 questions. �e number of passages in each question 
ranges from 2 to 732. �e question length ranges from 1 to 38 
words. �e passage length ranges from 1 to 362 words. Each 
question average has 100.7 passage candidates. On average, each 
question has one relevant passage. �e development set and test 
set contain 6,980 and 6,837 questions respectively. Each 
question has 1000 passages candidates retrieved with BM25 
from the MS MARCO corpus. In the test set, the question 
length ranges from 2 to 30 words. �e passage length ranges 
from 1 to 287 words.

Hyper-parameters
�is paper employs the BERT-base-uncased model to generate 
representations for sentence pairs. We utilize the output of the 
“[CLS]” token from the �nal layer of BERT as a representation 
of the QA pair. �e projection layer employs a single-layer 
neural network with the hyperbolic tangent activation function 
to generate 200-dimensional vector representations. We use 40 
tokens as the maximum length for questions and 200 tokens for 
answers. �e cache size is set to 15.

 �e AdamW optimization algorithm is used to update the 
model parameters [33]. We �ne-tune the BERT-base-uncased 

model on the passage reranking datasets. �e models run on an 
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (Mem: 330G) 
& 8 Tesla V100s and an Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz (Mem: 256) & 8 RTX 2080Tis.

Evaluation
�is paper uses mean average precision (MAP) and mean 
reciprocal rank (MRR) to evaluate the performance of the 
model. For the MS MARCO 2.0 dataset, we use the o�cial 
script to evaluate our results. �is script calculates the MRR@10 
which considers only the top 10 passages.

Results on the WIKIQA dataset
Table 2 presents the experimental result. Most baseline deep 
learning models typically design e�ective feature extraction 
schemes to better derive features from QA pairs for calculating 
question-answer similarity. �e BERT model has a similar goal 
of mapping a QA pair to a valid representation. �e proposed 
models are the following: 

document and consider all the sentences. Note that this 
setting cannot tackle a situation that has unlimited 
candidates. �e max pooling extracts the document 
information. Because the passage number is less than 30, so 
we can get the max pooling. 

iii. C2Retriever is the proposed model with list and adaptive 
context information.

 We observe that our model outperforms the BERT base and 
improves 1.93% MAP and 0.71% MRR respectively to 
wGRU-sGRU-Gl2-Cnt [5]. Considering the context information 
by max pooling improves 2.88% MAP and 2.92% MRR 
respectively. �is means that considering the document-level 
context information is helpful for each passage. We observe that 
our C2FRetriever improves 6.17% MAP and 6.82% MRR on the 
BERT base model. �is is because our network considers 
context information from other answers. �e sentences of 
WIKIQA come from consecutive sentences in the wiki page 
paragraphs, so other sentences can also provide rich contextual 
information. Our network so�ly incorporates the document 
context information into the sentence representation. 

Results on the MS MARCO 2.0 dataset 
Table 3 lists the results on the MS MARCO 2.0 dataset. 
Compared with the WIKIQA dataset, each passage may contain 
two or more sentences so the passage length varies over a wide 
range. �e passages of any question are from di�erent 
documents retrieved by a search engine, so the continuity of 
passages is also reduced. �is experiment can better test the 
versatility of our method. Nogueira and Cho �ne-tune the 
BERT base and large models and simply use the matching score 
of QA pairs for ranking [37]. Note that they train their models 
on multiple TPUs with appropriate batch size and sequence 
length, which can help to better adapt the representation to the 
target domain. �is device signi�cantly improves model results.

 Our approach potentially enables the usage of BERT based 
ranking model with lower equipment requirements. However, 

the drawback is that we compare the model performance by 
truncating the passage length. We further train our model by 
considering longer sequences (400 tokens) with multiple GPUs. 

Our model achieves further improvement by 1.7%. We achieve 
0.377 on the development set, which improves 3% from the 
TPU BERT base. �e full ranking method achieves the highest 

i. BERT base is the simple BERT model �ne-tuned on the 
WIKIQA dataset. �e inputs to the model are all QA pairs. 

ii. BERT base + MaxPooling denotes the BERT model add the 
max pooling. We organize the QA pairs according to the 

score, but the drawback is that the training process is a 
multi-stage pipeline. In contrast, our model only uses joint 
training and gets the �nal answer in one pass. �is method 
signi�cantly reduces the problem’s complexity.

 Compared with prior works, our approach incorporates the 
context information of other candidates to enhance the passage 
representation. Each query may have hundreds of retrieved 
passages from a large corpus. Our network e�ectively integrates 
the coarse- and �ne-selection processes by simultaneously 
performing model optimization and passage selection in one 
pass.

Ablation study
Table 4 shows the ablation study of the e�ects of di�erent model 
settings. A �rst observation is that the list context and adaptive 
context information are essential for a good result. Removing 
the List context information slightly degrades performance. 
�is indicates that the document-level context is necessary. 
When we train the pipeline model, the result drops (2.7%). �is 
means that joint training is important for the interaction of 
two-level ranking.  To evaluate the in�uence of cache size, we did extensive 

experiments based on di�erent cache sizes, as shown in Figure 
6. We observe that this model achieves higher performance with 
the cache size=16. As the cache size increases, the performance 
improves as it will allow the model to consider more contextual 
information. When we consider many passages, it can hurt 
performance because it introduces noise, so considering all 
candidates is not always a good option. �e choice of cache size 
is important to the result.

 When we replace context information with MaxPooling, the 
result also drops, but it is better than not considering the 
context. �is means considering document-level context 
information is helpful and using MaxPooling is a 
straightforward choice. When we replace MaxPooling with an 
LSTM encoder, the result slightly drops. �is is because the 
passages may not continuous context model and we have the 
long-term dependency problem because we consider all 
pair-wise interactions. When we remove the �ne ranker, the 
result drops. �is suggests that the two-level selection scheme is 
necessary.

 We further analyze the impact of query/passage length and 
number of passages, as shown in Figure 5. We limit the 
maximum length of queries to n tokens. We �nd that, for the 
same length of passage, longer query lengths generally lead to 
better results. However, for shorter query lengths, speci�cally 
when n < 20, longer passage lengths do not always result in 
improved outcomes. Since the meaning of the query is not well 
encoded, longer passages may contain more misleading 
information. �erefore, it is important to interpret and expand 
queries to improve results. We can conclude that an appropriate 
combination of query and paragraph lengths and model 
selection is crucial for the method.

Conclusions and Future Work
In this paper, we present a novel approach to passage reranking 
that incorporates list-context information to enhance the 
representation of passages across di�erent contexts. Unlike 
previous studies, we recognize the signi�cance of list-context 
information from other candidate passages in addressing the 
challenge of incomplete passage semantics and develop a 
method to integrate it e�ectively. Our model addresses the 
limitation of out-of-memory issues by leveraging a cache policy 
learning approach to represent list context. Additionally, we 
address the challenge of two-stage joint retrieval by integrating 
coarse and �ne rankers in a seamless manner. Our model is 

trained by optimizing all components simultaneously, leading 
to the generation of the �nal answer in a single pass, which 
signi�cantly reduces the complexity of the problem.

 �is paper primarily focuses on addressing the challenge of 
incorporating list-context information from other candidates. 
�e model has the potential to be extended to other cascaded 
tasks, such as information extraction and downstream 
applications, in the future [38].
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Passage reranking is a subtask of question answering and 
machine reading comprehension that involves retrieving one or 
several passages (text options) that can best answer a given 
question [1]. Each passage contains one or several sentences, as 

shown in Table 1. �e most common approach is to model the 
question-answer (QA) pair [2], and then compute various 
similarity measures between obtained representations. 
Finally, we can choose the high-score candidates as the 
answer. 

each passage by considering the context information from other 
candidates can lead to more con�dent results. We use 
“list-context” across di�erent passages to di�erentiate the 
“context” that is o�en discussed in the same QA pair. 
Context-independent representations may limit passage 
semantics when other passages provide useful context 
information for the question. For example, passage A in Table 1 
explains that “cardiovascular disease” refers to heart disease. 
Although passage C does not mention heart disease, we can still 
derive relevant information from passage A.

 Modeling list-context is a nontrivial task. �e �rst challenge 
is to emphasize the comparative and reference information. 
Previous studies have tackled this challenge by utilizing 
hierarchical gated recurrent unit recurrent neural networks 
(GRU RNNs) to consider context information among sentences 
[5]. However, they did not explicitly enhance sentence 
representation by leveraging other candidates. Another 
approach is multi-mention learning, which models multiple 
mentions in a document to answer questions [6]. While these 
methods have made signi�cant contributions, they do not 
explicitly model the context information in the passage list. To 
address this limitation, we propose a list-context attention 
mechanism composed of static attention and adaptive attention. 
�is mechanism injects list context information into the 
passage, allowing each candidate to consider the whole list 
semantics by attending to all the candidates. Additionally, 
adaptive attention enables each passage to adaptively interact 
with other candidates by considering their correlation 
information.

 �e second challenge is the large number of candidate 
passages. It’s di�cult to analyze thousands of passages 
simultaneously without running into technical issues. Previous 
research typically broke down a long list of passages into smaller 
parts and then created a context-independent representation of 
each sentence pair. �is approach o�en relies on a multi-stage 
retrieval architecture [7], where the candidate documents are 
repeatedly narrowed down and reordered. Our paper addresses 
this issue by applying a two-stage retrieval approach to the 
neural model. Unlike previous methods, our model streamlines 
the multi-stage process into a two-level (coarse-to-�ne) model. 
First, it selects a good passage set roughly, and then it �netunes 
the selection by ignoring irrelevant instances that are far from 
the classi�cation hyperplane. By training two layers of model 
parameters jointly, our approach enables them to collaborate 
and interact more e�ectively.

 We introduce a cache policy learning (CPL) algorithm to 
model the two-level selection process end-to-end. �e coarse 
selection sub-process uses a scoring function to rank the 
sentences in the cache memory and dynamically selects the 
top-k scoring sentences for further processing. In addition to 
the coarse selection sub-process, our model also incorporates a 
�ne ranker to further re�ne the representations. Our model 
performs passage reranking and parameter optimization 
simultaneously. We conduct experiments on the WIKIQA and 
MS MARCO 2.0 datasets [8,9]. �e results show the 
e�ectiveness of our approach. �e distinctive properties of this 
paper are as follows:

i. �is paper introduces the idea of enhancing passage 
representation by considering context information from 
other candidates. 

ii. �is paper proposes a list-context attention mechanism, 
composed of static attention and adaptive attention, to 
model list-context information. 

iii. �is paper introduces a C2FRetriever with a cache policy 
learning algorithm, which can select answers from a coarse 
to �ne level in a single pass. �e experimental results 
demonstrate the good performance of the proposed 
method.

Related Work
Previous work employs deep learning models to enhance 
sentence representations and compute their similarity. 
Rocktäschel et al. propose a textual entailment model that 
models word relations between sentences by using 
word-to-word attention on an LSTM-RNN [10]. Severyn and 
Moschitti propose CNNR to consider overlapping words to 
encode relational information between question and answer 
[2]. Yin et al. propose 3 attention methods on a CNN model 
(ABCNN) to encode mutual interactions between sentences 
[11]. Miller et al. propose key-value memory networks 
(KV-MemeNN) to select answers by using key-value structured 
facts in the model memory [12]. Wang et al. propose a bilateral 
multi-view matching (BiMPM) model [13], which utilizes an 
attention mechanism to model the mutual interaction of 
sentences at di�erent scales. Bachrach et al. apply two attention 
operations to capture more word-level contextual information, 
but their work still focuses on enhancing sentence-pair 
representations without considering list-level contextual 
information [14]. A work close to ours is the hierarchical 
GRU-RNN [5], which is used to model word-level and 
sentence-level matching and provide a kind of contextual 
information. However, their approach does not explicitly 
enhance sentence representations by using contextual 
information from other candidates. Our approach incorporates 
list-context information to augment sentence representation. 
Ran et al. propose an option comparison network (OCN) for 
multiple choice reading comprehension (MCRC) [15].

 Guo et al. propose the deep dependent matching model 
(DRMM), which introduces a histogram pooling technique to 
summarize the translation matrix [16]. Xiong et al. propose 
KNRM, which uses a kernel pooling layer to so�ly compute the 
frequency of word pairs at di�erent similarity levels [17]. 
MARCO’s o�cial baseline uses two separate DNNs to model 
query-document relevance using local and distributed 
representations, respectively [18]. Conv-KNRM enhances 
KNRM by utilizing CNN to compose n-gram embeddings from 
word embeddings and cross-matched n-grams of di�erent 
lengths [19]. SAN + BERT base maintains a state and iteratively 
re�nes its predictions [20].

 Previous work mainly uses a multi-stage retrieval 
architecture in web search systems [7]. A set of candidate 
documents is generated using a series of increasingly expensive 
machine-learning techniques. present a method for optimizing 
cascaded ranking models [21]. BERT is a pre-trained language 
model based on the bidirectional Transformer architecture 
[22-26]. It has been demonstrated to be highly e�ective in 
generating rich representations for pairs of sentences. BERT 
o�ers a means to directly model the interactions between 
passages. Sentence-BERT (SBERT) is an improved model based 
on BERT and RoBERTa that is used to e�ciently calculate the 
similarity between sentences [27]. It is trained through siamese 

 Recent studies have improved the quality of general text 
embeddings for representing passages. BAAI general 
embedding (BGE) utilizes the RetroMAE approach for 
pre-training and employs contrastive learning for �ne-tuning 
[3]. Moreover, online services such as OpenAI’s text embedding 
and Cohere-V3 generate text embeddings through their API 
[4]. While previous work has o�en focused on enriching text 
embeddings or enhancing the interaction between 
question-answer pairs, they have rarely considered the in�uence 

of other candidates. As a result, the relationships between 
candidates have not been fully explored. When humans select 
an answer, they consider not only whether each individual 
passage aligns with the question but also the presence of 
superior alternatives. Especially when the passages are derived 
from the same document or related documents, their 
semantics are o�en incomplete, and other candidates may 
contain valuable information that can supplement and 
interpret the current passage. Enriching the representation of 

and triplet network architecture, making the representation of 
sentences in vector space more suitable for cosine-similarity 
calculations. KEPLER proposes a method to jointly optimize 
knowledge embedding (KE) and pre-trained language model 
(PLM) [28]. �is means that the model simultaneously learns 
how to extract relational facts from the knowledge graph and 
how to understand language patterns from text during training.

 General text embedding techniques are commonly 
employed for web search and question answering, and they are 
also used to enhance the capabilities of large language models 
[1,29,30]. BGE adopts the RetroMAE method for pre-training 
and leverages contrastive learning for �ne-tuning [3]. OpenAI 
text embedding produces high-quality text and code vector 
representations through contrastive pre-training on large 
amounts of unsupervised data [4]. Cohere-v31  improves the 
quality of text embeddings by evaluating how well the query 
matches the document’s topic and assessing the overall quality 
of the content. However, when the document is segmented, it is 
easy to cause semantic incompleteness. �e above 
state-of-the-art method only enhances the text embeddings of a 
single passage and cannot obtain supplementary semantic 
information from other passages belonging to the same 
document. Our method provides complementary information 
between passages by modeling the relationship between 
passages in the same document. Our C2FRetriever is trained in 
an end-to-end manner so that the parameters of the coarse 
ranker and �ne ranker can be jointly optimized for better 
collaboration between the two levels.
1https://huggingface.co/Cohere  

Approach
Suppose we have a question Q with l tokens {                           }, 
and a candidate answer set O with n passages {                       }. n 
is the number of passages that can vary over a wide range 
(1~1000). Each passage    contains one or several sentences 
(passage) which consists of      tokens {                          }. �e label 
yi ∈ {0, 1} with 1 denotes a positive answer and 0 otherwise. �e 
goal of the model is to score each passage based on how well it 
answers the question and then rank the passages based on the 
score.

 Our main e�ort lies in designing a deep learning architecture 
that enhances representations by considering the contextual 
information of other candidates. Its main building block has 
two layers, the coarse ranker and the �ne ranker. In the 
following, we �rst describe the two layers and then describe the 
training algorithm.

Coarse ranker
�e architecture of the coarse ranker is shown in the lower part 
of Figure 1. �is layer aims to �lter some answers that are 
irrelevant to the given question to generate an intermediate set 
for performing �ne selection. We use a BERT model to generate 
representations of QA pairs and a single-layer neural network to 
compute matching scores [22]. 

Passage Oi is concatenated with question Q to form a complete 
sequence, denoted as ⟨[CLS]; Q; [SEP]; Oi; [SEP]⟩.

    
where              is the QA representation. Fbert denotes the 
network de�ned in Devlin et al. [22]. �e representations are 

then projected to matching scores using a single layer neural 
network.

Where W^c∈ R^(d and b^c is a scalar. σ is the sigmoid 
activation function. �is layer takes all QA pairs as input          
[(Q, O1), (Q, O2), ..., (Q, O   ], and then the model assigns a 
score to each candidate.

 Modeling all candidates directly will result in 
out-of-memory issues due to the large amount of list-context 
information that needs to be processed simultaneously. �e 
model parameter size is very large, and the gradient state 
retained during the optimization process will double the 
memory usage. To solve this problem, we propose using 
di�erent paths and caching mechanisms. Each path represents a 
di�erent function that processes the data in a way that reduces 
memory usage. �e coarse ranker creates a cache used to store 
the top-k passages it has encountered previously. According to 
p_, passages are dynamically ranked through path S1, which 
contains the function listed below.

where h0 is the initial state of the empty cache. ht is the cache 
state a�er t step update and contains the selected passages. K 
denotes the ranking function.

 Prior early-stage models typically process all the candidates 
Figure 2. Schematic diagram of the fine ranker.

Static attention
To capture and compose the context semantics from the answer 
list, our model uses an attention mechanism which achieves the 
best performance in di�erent alternatives to obtain the 
list-context representation [31,32]. �is method extracts 
informative passages and aggregates their representations to 
form the list-context representation V. �is method �rst 
measures the weight of each passage in the list context. 

where Cl ∈Rd is the context vector that can be jointly trained. 
�en, this model computes the normalized weight of each 
passage through a so�max function and aggregates these 
representations.

where max(u) gets the max value of [u_0, u_1, ..., u] where k is 
the candidate number. �is operation encodes the list context 
into a vector which summarizes the main semantics of this list. 
�is allows the model to so�ly consider all candidates in the 
entire list.

Where V  is the list-context representation.

Adaptive attention
While the static attention supplements the list-context 
information for each passage, V  is the same for all candidates 
and does not consider the question. Ideally, we would like to 
overcome the above two problems, by considering list-context 
information and adaptively incorporating the context 
information for each passage based on the question. Our model 
resolves this problem by using adaptive attention which injects 
the correlation information of passages into passage 
representation directly, as shown in Figure 2. �is method �rst 
computes the correlation weight between these passages by 
considering the semantic similarity of the QA pair and the 
list-context information. 

       
�en, this method obtains normalized correlation weights 
through a so�max function.
 

�e adaptive context representation is obtained by calculating 
the weighted sum of the passage representations.

where Z is the adaptive context of i-th passage. By using this 
attention scheme, each passage has a set of adaptive correlation 
weights with other candidates. �is correlation information can 
aggregate the passage representations �exibly. �is interaction 
operation encodes the correlation between candidates while 
also considering the list-context information and question.
�en, the ranking score of the options in the cache can be 
calculated as below.

Where f))�R^(1×τ) and (f))are linear composition matrix and 
bias. τ is vector dimension. [;] denotes the concatenation 
operation. (f)) is the score vector.

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

and then retain the top-k candidates which are also written to 
disk. Di�erent from them, we incrementally maintain the cache 
memory which only retains the top-k scoring QA pairs. k is a 
hyperparameter. �en, residual path S2 is used to connect the 
QA representation to the �ne ranker, and it contains the 
function of the equation (4).

Where (c) ) represents the    is the matrix 
for top-k QA pairs. (f) denotes the �ne ranker. C is the selection 
function.

 �e residual path S3 indicates that it is used to transfer the 
top-k paragraphs selected in the coarse ranker to the �ne ranker 
layer and generate a vector representation of the passage. Unlike 
the vector representation in the coarse ranker, it only contains 
the content of the passage, not the question. �ese passages are 
derived from the top-k candidate paragraphs to generate list 
context information. �e sorting result is the result of the 
borrowed coarse ranker without repeated calculations. �is 
path can be described by equation (5). Finally, the selected 
passages and representations in the cache are sent to the �ne 
ranker.

Where (f)) is the matrix for top-k passages.(c) is the 
representation for i-th passage, which can be calculated by 
equation (6).

Fine ranker
�e inputs to the �ne ranker are vectors of top-k QA pairs ((f)) 
and top-k passages (f)). �e architecture of the �ne ranker is 
depicted in Figure 2. It incorporates a list-context attention 
mechanism that combines both static and adaptive attention. 

A�er getting the top-k sentences, this model will carry out the 
�ne selection process as described in the Fine Ranker 
subsection. �is model is trained using the log loss of two-level 
selection as shown below.

where yj is the label of the j-th passage. (c)  and (f) are the 
predicted score of j-th passage in the coarse and �ne rankers 
respectively. �en, these two layers are jointly trained to �nd a 
balance between passage selection and joint parameter 
optimization, as shown below.

where λ (We set λ=1.0) is a hyper-parameter to weigh the 
in�uence of the �ne ranker.

 �e asymptotic complexity is described as follows. Assuming 
that all hidden dimensions are ρ, the complexity of matrix (ρ×
ρ)-vector (ρ×1) multiplication is O(ρ2). BERT takes O(Cber). 
For the coarse ranker, calculating the BERT representation of n 
QA pairs and passages takes O(nCber). To maintain the cache, 
we need a top-k sort operation which takes O(nk) at the worst 

case. For the �ne ranker, the list context information requires 
O(ρ2). �e adaptive context information requires O(kρ2). 
�erefore, the total complexity is O(〖nC〗_bert). For BERT, it 
mainly includes matrix-vector multiplication, so the optimized 
calculation requires O(mlρ2). where m is the number of 
matrix-vector multiplications, and l is the sequence length. �e 
computational complexity of this model is still close to that of 
BERT.

Experiments
Datasets
WIKIQIA

�is is a standard open-domain QA dataset. �e questions are 
sampled from the Bing query logs, and the candidate sentences 
are extracted from paragraphs of the associated Wiki pages. 
�is dataset includes 3,047 questions and 29,258 sentences [8], 
where 1,473 candidate passages are labeled as answer sentences. 
Each passage contains only one sentence. We use the standard 
data splits in experiments. Figure 3 visualizes the data 
distribution of this dataset. �e x- and y- axes denote the 
number of candidate sentences and the number of questions 
respectively. �e candidate number of each question ranges 
from 1 to 30 and the average candidate number is 9.6. �e 
average length of question and answer are 6.5 and 25.1 words 
respectively.

Training algorithm
Prior multi-stage retrieval methods typically cascade di�erent 
machine learning techniques. Di�erent from the cascaded 
ranking architecture, we introduce the CPL algorithm to train a 
two-level network for the two-stage retrieval problem. �is 
algorithm performs ranking operations during the training 
process and can optimize the two-stage retrieval processes 
jointly.

 As shown in Algorithm 1, in line 1, this model �rst initializes 
the cache memory. �en, during model training, this model 
adds the ground truth answer to the memory, in line 2. In lines 
3-12, this model maintains the cache memory by coarsely 

selecting the top-k candidates. In lines 4-5, this model calculates 
the matching score based on the BERT representation. If the 
current candidate is a positive answer, its index j, matching 
score (c))  and representation pBert will be added to the cache, 
in line 7. If the current candidate does not match this question, 
this model will maintain the top-k candidates based on their 
scores. In line 13, this model merges the cache memory. In line 
14, this model incorporates the context information of other 
sentences in the �ne ranker to augment the passage 
representation. Finally, this model calculates the loss values of 
coarse and �ne rankers. �en, we can update the model 
parameters by backpropagation using an optimization 
algorithm.

MS MARCO 2.02 

�is is a large-scale machine reading comprehension dataset 
sampled from Bing’s search query logs [9]. We choose the 
dataset for the passage re-ranking task. Given a set of 1000 
passages that have been retrieved using the BM25 algorithm, 
re-rank these passages on their relevance to the query. �is 
dataset was the primary focus of the 2020 and 2019 TREC Deep 
Learning Track. It has also been utilized as a teaching resource 
for the ACM SIGIR/SIGKDD AFIRM Summer School, which 
o�ers courses on Machine Learning for Data Mining and 
Search. Figure 4 visualizes the data distribution of this dataset. 

�e x- and y- axes denote the number of candidate passages and 
the number of questions respectively. �e training set contains 
398,792 questions. �e number of passages in each question 
ranges from 2 to 732. �e question length ranges from 1 to 38 
words. �e passage length ranges from 1 to 362 words. Each 
question average has 100.7 passage candidates. On average, each 
question has one relevant passage. �e development set and test 
set contain 6,980 and 6,837 questions respectively. Each 
question has 1000 passages candidates retrieved with BM25 
from the MS MARCO corpus. In the test set, the question 
length ranges from 2 to 30 words. �e passage length ranges 
from 1 to 287 words.

Hyper-parameters
�is paper employs the BERT-base-uncased model to generate 
representations for sentence pairs. We utilize the output of the 
“[CLS]” token from the �nal layer of BERT as a representation 
of the QA pair. �e projection layer employs a single-layer 
neural network with the hyperbolic tangent activation function 
to generate 200-dimensional vector representations. We use 40 
tokens as the maximum length for questions and 200 tokens for 
answers. �e cache size is set to 15.

 �e AdamW optimization algorithm is used to update the 
model parameters [33]. We �ne-tune the BERT-base-uncased 

model on the passage reranking datasets. �e models run on an 
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (Mem: 330G) 
& 8 Tesla V100s and an Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz (Mem: 256) & 8 RTX 2080Tis.

Evaluation
�is paper uses mean average precision (MAP) and mean 
reciprocal rank (MRR) to evaluate the performance of the 
model. For the MS MARCO 2.0 dataset, we use the o�cial 
script to evaluate our results. �is script calculates the MRR@10 
which considers only the top 10 passages.

Results on the WIKIQA dataset
Table 2 presents the experimental result. Most baseline deep 
learning models typically design e�ective feature extraction 
schemes to better derive features from QA pairs for calculating 
question-answer similarity. �e BERT model has a similar goal 
of mapping a QA pair to a valid representation. �e proposed 
models are the following: 

document and consider all the sentences. Note that this 
setting cannot tackle a situation that has unlimited 
candidates. �e max pooling extracts the document 
information. Because the passage number is less than 30, so 
we can get the max pooling. 

iii. C2Retriever is the proposed model with list and adaptive 
context information.

 We observe that our model outperforms the BERT base and 
improves 1.93% MAP and 0.71% MRR respectively to 
wGRU-sGRU-Gl2-Cnt [5]. Considering the context information 
by max pooling improves 2.88% MAP and 2.92% MRR 
respectively. �is means that considering the document-level 
context information is helpful for each passage. We observe that 
our C2FRetriever improves 6.17% MAP and 6.82% MRR on the 
BERT base model. �is is because our network considers 
context information from other answers. �e sentences of 
WIKIQA come from consecutive sentences in the wiki page 
paragraphs, so other sentences can also provide rich contextual 
information. Our network so�ly incorporates the document 
context information into the sentence representation. 

Results on the MS MARCO 2.0 dataset 
Table 3 lists the results on the MS MARCO 2.0 dataset. 
Compared with the WIKIQA dataset, each passage may contain 
two or more sentences so the passage length varies over a wide 
range. �e passages of any question are from di�erent 
documents retrieved by a search engine, so the continuity of 
passages is also reduced. �is experiment can better test the 
versatility of our method. Nogueira and Cho �ne-tune the 
BERT base and large models and simply use the matching score 
of QA pairs for ranking [37]. Note that they train their models 
on multiple TPUs with appropriate batch size and sequence 
length, which can help to better adapt the representation to the 
target domain. �is device signi�cantly improves model results.

 Our approach potentially enables the usage of BERT based 
ranking model with lower equipment requirements. However, 

the drawback is that we compare the model performance by 
truncating the passage length. We further train our model by 
considering longer sequences (400 tokens) with multiple GPUs. 

Our model achieves further improvement by 1.7%. We achieve 
0.377 on the development set, which improves 3% from the 
TPU BERT base. �e full ranking method achieves the highest 

i. BERT base is the simple BERT model �ne-tuned on the 
WIKIQA dataset. �e inputs to the model are all QA pairs. 

ii. BERT base + MaxPooling denotes the BERT model add the 
max pooling. We organize the QA pairs according to the 

score, but the drawback is that the training process is a 
multi-stage pipeline. In contrast, our model only uses joint 
training and gets the �nal answer in one pass. �is method 
signi�cantly reduces the problem’s complexity.

 Compared with prior works, our approach incorporates the 
context information of other candidates to enhance the passage 
representation. Each query may have hundreds of retrieved 
passages from a large corpus. Our network e�ectively integrates 
the coarse- and �ne-selection processes by simultaneously 
performing model optimization and passage selection in one 
pass.

Ablation study
Table 4 shows the ablation study of the e�ects of di�erent model 
settings. A �rst observation is that the list context and adaptive 
context information are essential for a good result. Removing 
the List context information slightly degrades performance. 
�is indicates that the document-level context is necessary. 
When we train the pipeline model, the result drops (2.7%). �is 
means that joint training is important for the interaction of 
two-level ranking.  To evaluate the in�uence of cache size, we did extensive 

experiments based on di�erent cache sizes, as shown in Figure 
6. We observe that this model achieves higher performance with 
the cache size=16. As the cache size increases, the performance 
improves as it will allow the model to consider more contextual 
information. When we consider many passages, it can hurt 
performance because it introduces noise, so considering all 
candidates is not always a good option. �e choice of cache size 
is important to the result.

 When we replace context information with MaxPooling, the 
result also drops, but it is better than not considering the 
context. �is means considering document-level context 
information is helpful and using MaxPooling is a 
straightforward choice. When we replace MaxPooling with an 
LSTM encoder, the result slightly drops. �is is because the 
passages may not continuous context model and we have the 
long-term dependency problem because we consider all 
pair-wise interactions. When we remove the �ne ranker, the 
result drops. �is suggests that the two-level selection scheme is 
necessary.

 We further analyze the impact of query/passage length and 
number of passages, as shown in Figure 5. We limit the 
maximum length of queries to n tokens. We �nd that, for the 
same length of passage, longer query lengths generally lead to 
better results. However, for shorter query lengths, speci�cally 
when n < 20, longer passage lengths do not always result in 
improved outcomes. Since the meaning of the query is not well 
encoded, longer passages may contain more misleading 
information. �erefore, it is important to interpret and expand 
queries to improve results. We can conclude that an appropriate 
combination of query and paragraph lengths and model 
selection is crucial for the method.

Conclusions and Future Work
In this paper, we present a novel approach to passage reranking 
that incorporates list-context information to enhance the 
representation of passages across di�erent contexts. Unlike 
previous studies, we recognize the signi�cance of list-context 
information from other candidate passages in addressing the 
challenge of incomplete passage semantics and develop a 
method to integrate it e�ectively. Our model addresses the 
limitation of out-of-memory issues by leveraging a cache policy 
learning approach to represent list context. Additionally, we 
address the challenge of two-stage joint retrieval by integrating 
coarse and �ne rankers in a seamless manner. Our model is 

trained by optimizing all components simultaneously, leading 
to the generation of the �nal answer in a single pass, which 
signi�cantly reduces the complexity of the problem.

 �is paper primarily focuses on addressing the challenge of 
incorporating list-context information from other candidates. 
�e model has the potential to be extended to other cascaded 
tasks, such as information extraction and downstream 
applications, in the future [38].
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Passage reranking is a subtask of question answering and 
machine reading comprehension that involves retrieving one or 
several passages (text options) that can best answer a given 
question [1]. Each passage contains one or several sentences, as 

shown in Table 1. �e most common approach is to model the 
question-answer (QA) pair [2], and then compute various 
similarity measures between obtained representations. 
Finally, we can choose the high-score candidates as the 
answer. 

each passage by considering the context information from other 
candidates can lead to more con�dent results. We use 
“list-context” across di�erent passages to di�erentiate the 
“context” that is o�en discussed in the same QA pair. 
Context-independent representations may limit passage 
semantics when other passages provide useful context 
information for the question. For example, passage A in Table 1 
explains that “cardiovascular disease” refers to heart disease. 
Although passage C does not mention heart disease, we can still 
derive relevant information from passage A.

 Modeling list-context is a nontrivial task. �e �rst challenge 
is to emphasize the comparative and reference information. 
Previous studies have tackled this challenge by utilizing 
hierarchical gated recurrent unit recurrent neural networks 
(GRU RNNs) to consider context information among sentences 
[5]. However, they did not explicitly enhance sentence 
representation by leveraging other candidates. Another 
approach is multi-mention learning, which models multiple 
mentions in a document to answer questions [6]. While these 
methods have made signi�cant contributions, they do not 
explicitly model the context information in the passage list. To 
address this limitation, we propose a list-context attention 
mechanism composed of static attention and adaptive attention. 
�is mechanism injects list context information into the 
passage, allowing each candidate to consider the whole list 
semantics by attending to all the candidates. Additionally, 
adaptive attention enables each passage to adaptively interact 
with other candidates by considering their correlation 
information.

 �e second challenge is the large number of candidate 
passages. It’s di�cult to analyze thousands of passages 
simultaneously without running into technical issues. Previous 
research typically broke down a long list of passages into smaller 
parts and then created a context-independent representation of 
each sentence pair. �is approach o�en relies on a multi-stage 
retrieval architecture [7], where the candidate documents are 
repeatedly narrowed down and reordered. Our paper addresses 
this issue by applying a two-stage retrieval approach to the 
neural model. Unlike previous methods, our model streamlines 
the multi-stage process into a two-level (coarse-to-�ne) model. 
First, it selects a good passage set roughly, and then it �netunes 
the selection by ignoring irrelevant instances that are far from 
the classi�cation hyperplane. By training two layers of model 
parameters jointly, our approach enables them to collaborate 
and interact more e�ectively.

 We introduce a cache policy learning (CPL) algorithm to 
model the two-level selection process end-to-end. �e coarse 
selection sub-process uses a scoring function to rank the 
sentences in the cache memory and dynamically selects the 
top-k scoring sentences for further processing. In addition to 
the coarse selection sub-process, our model also incorporates a 
�ne ranker to further re�ne the representations. Our model 
performs passage reranking and parameter optimization 
simultaneously. We conduct experiments on the WIKIQA and 
MS MARCO 2.0 datasets [8,9]. �e results show the 
e�ectiveness of our approach. �e distinctive properties of this 
paper are as follows:

i. �is paper introduces the idea of enhancing passage 
representation by considering context information from 
other candidates. 

ii. �is paper proposes a list-context attention mechanism, 
composed of static attention and adaptive attention, to 
model list-context information. 

iii. �is paper introduces a C2FRetriever with a cache policy 
learning algorithm, which can select answers from a coarse 
to �ne level in a single pass. �e experimental results 
demonstrate the good performance of the proposed 
method.

Related Work
Previous work employs deep learning models to enhance 
sentence representations and compute their similarity. 
Rocktäschel et al. propose a textual entailment model that 
models word relations between sentences by using 
word-to-word attention on an LSTM-RNN [10]. Severyn and 
Moschitti propose CNNR to consider overlapping words to 
encode relational information between question and answer 
[2]. Yin et al. propose 3 attention methods on a CNN model 
(ABCNN) to encode mutual interactions between sentences 
[11]. Miller et al. propose key-value memory networks 
(KV-MemeNN) to select answers by using key-value structured 
facts in the model memory [12]. Wang et al. propose a bilateral 
multi-view matching (BiMPM) model [13], which utilizes an 
attention mechanism to model the mutual interaction of 
sentences at di�erent scales. Bachrach et al. apply two attention 
operations to capture more word-level contextual information, 
but their work still focuses on enhancing sentence-pair 
representations without considering list-level contextual 
information [14]. A work close to ours is the hierarchical 
GRU-RNN [5], which is used to model word-level and 
sentence-level matching and provide a kind of contextual 
information. However, their approach does not explicitly 
enhance sentence representations by using contextual 
information from other candidates. Our approach incorporates 
list-context information to augment sentence representation. 
Ran et al. propose an option comparison network (OCN) for 
multiple choice reading comprehension (MCRC) [15].

 Guo et al. propose the deep dependent matching model 
(DRMM), which introduces a histogram pooling technique to 
summarize the translation matrix [16]. Xiong et al. propose 
KNRM, which uses a kernel pooling layer to so�ly compute the 
frequency of word pairs at di�erent similarity levels [17]. 
MARCO’s o�cial baseline uses two separate DNNs to model 
query-document relevance using local and distributed 
representations, respectively [18]. Conv-KNRM enhances 
KNRM by utilizing CNN to compose n-gram embeddings from 
word embeddings and cross-matched n-grams of di�erent 
lengths [19]. SAN + BERT base maintains a state and iteratively 
re�nes its predictions [20].

 Previous work mainly uses a multi-stage retrieval 
architecture in web search systems [7]. A set of candidate 
documents is generated using a series of increasingly expensive 
machine-learning techniques. present a method for optimizing 
cascaded ranking models [21]. BERT is a pre-trained language 
model based on the bidirectional Transformer architecture 
[22-26]. It has been demonstrated to be highly e�ective in 
generating rich representations for pairs of sentences. BERT 
o�ers a means to directly model the interactions between 
passages. Sentence-BERT (SBERT) is an improved model based 
on BERT and RoBERTa that is used to e�ciently calculate the 
similarity between sentences [27]. It is trained through siamese 

 Recent studies have improved the quality of general text 
embeddings for representing passages. BAAI general 
embedding (BGE) utilizes the RetroMAE approach for 
pre-training and employs contrastive learning for �ne-tuning 
[3]. Moreover, online services such as OpenAI’s text embedding 
and Cohere-V3 generate text embeddings through their API 
[4]. While previous work has o�en focused on enriching text 
embeddings or enhancing the interaction between 
question-answer pairs, they have rarely considered the in�uence 

of other candidates. As a result, the relationships between 
candidates have not been fully explored. When humans select 
an answer, they consider not only whether each individual 
passage aligns with the question but also the presence of 
superior alternatives. Especially when the passages are derived 
from the same document or related documents, their 
semantics are o�en incomplete, and other candidates may 
contain valuable information that can supplement and 
interpret the current passage. Enriching the representation of 

and triplet network architecture, making the representation of 
sentences in vector space more suitable for cosine-similarity 
calculations. KEPLER proposes a method to jointly optimize 
knowledge embedding (KE) and pre-trained language model 
(PLM) [28]. �is means that the model simultaneously learns 
how to extract relational facts from the knowledge graph and 
how to understand language patterns from text during training.

 General text embedding techniques are commonly 
employed for web search and question answering, and they are 
also used to enhance the capabilities of large language models 
[1,29,30]. BGE adopts the RetroMAE method for pre-training 
and leverages contrastive learning for �ne-tuning [3]. OpenAI 
text embedding produces high-quality text and code vector 
representations through contrastive pre-training on large 
amounts of unsupervised data [4]. Cohere-v31  improves the 
quality of text embeddings by evaluating how well the query 
matches the document’s topic and assessing the overall quality 
of the content. However, when the document is segmented, it is 
easy to cause semantic incompleteness. �e above 
state-of-the-art method only enhances the text embeddings of a 
single passage and cannot obtain supplementary semantic 
information from other passages belonging to the same 
document. Our method provides complementary information 
between passages by modeling the relationship between 
passages in the same document. Our C2FRetriever is trained in 
an end-to-end manner so that the parameters of the coarse 
ranker and �ne ranker can be jointly optimized for better 
collaboration between the two levels.
1https://huggingface.co/Cohere  

Approach
Suppose we have a question Q with l tokens {                           }, 
and a candidate answer set O with n passages {                       }. n 
is the number of passages that can vary over a wide range 
(1~1000). Each passage    contains one or several sentences 
(passage) which consists of      tokens {                          }. �e label 
yi ∈ {0, 1} with 1 denotes a positive answer and 0 otherwise. �e 
goal of the model is to score each passage based on how well it 
answers the question and then rank the passages based on the 
score.

 Our main e�ort lies in designing a deep learning architecture 
that enhances representations by considering the contextual 
information of other candidates. Its main building block has 
two layers, the coarse ranker and the �ne ranker. In the 
following, we �rst describe the two layers and then describe the 
training algorithm.

Coarse ranker
�e architecture of the coarse ranker is shown in the lower part 
of Figure 1. �is layer aims to �lter some answers that are 
irrelevant to the given question to generate an intermediate set 
for performing �ne selection. We use a BERT model to generate 
representations of QA pairs and a single-layer neural network to 
compute matching scores [22]. 

Passage Oi is concatenated with question Q to form a complete 
sequence, denoted as ⟨[CLS]; Q; [SEP]; Oi; [SEP]⟩.

    
where              is the QA representation. Fbert denotes the 
network de�ned in Devlin et al. [22]. �e representations are 

then projected to matching scores using a single layer neural 
network.

Where W^c∈ R^(d and b^c is a scalar. σ is the sigmoid 
activation function. �is layer takes all QA pairs as input          
[(Q, O1), (Q, O2), ..., (Q, O   ], and then the model assigns a 
score to each candidate.

 Modeling all candidates directly will result in 
out-of-memory issues due to the large amount of list-context 
information that needs to be processed simultaneously. �e 
model parameter size is very large, and the gradient state 
retained during the optimization process will double the 
memory usage. To solve this problem, we propose using 
di�erent paths and caching mechanisms. Each path represents a 
di�erent function that processes the data in a way that reduces 
memory usage. �e coarse ranker creates a cache used to store 
the top-k passages it has encountered previously. According to 
p_, passages are dynamically ranked through path S1, which 
contains the function listed below.

where h0 is the initial state of the empty cache. ht is the cache 
state a�er t step update and contains the selected passages. K 
denotes the ranking function.

 Prior early-stage models typically process all the candidates 

Static attention
To capture and compose the context semantics from the answer 
list, our model uses an attention mechanism which achieves the 
best performance in di�erent alternatives to obtain the 
list-context representation [31,32]. �is method extracts 
informative passages and aggregates their representations to 
form the list-context representation V. �is method �rst 
measures the weight of each passage in the list context. 

where Cl ∈Rd is the context vector that can be jointly trained. 
�en, this model computes the normalized weight of each 
passage through a so�max function and aggregates these 
representations.

where max(u) gets the max value of [u_0, u_1, ..., u] where k is 
the candidate number. �is operation encodes the list context 
into a vector which summarizes the main semantics of this list. 
�is allows the model to so�ly consider all candidates in the 
entire list.

Where V  is the list-context representation.

Adaptive attention
While the static attention supplements the list-context 
information for each passage, V  is the same for all candidates 
and does not consider the question. Ideally, we would like to 
overcome the above two problems, by considering list-context 
information and adaptively incorporating the context 
information for each passage based on the question. Our model 
resolves this problem by using adaptive attention which injects 
the correlation information of passages into passage 
representation directly, as shown in Figure 2. �is method �rst 
computes the correlation weight between these passages by 
considering the semantic similarity of the QA pair and the 
list-context information. 

       
�en, this method obtains normalized correlation weights 
through a so�max function.
 

�e adaptive context representation is obtained by calculating 
the weighted sum of the passage representations.

where Z is the adaptive context of i-th passage. By using this 
attention scheme, each passage has a set of adaptive correlation 
weights with other candidates. �is correlation information can 
aggregate the passage representations �exibly. �is interaction 
operation encodes the correlation between candidates while 
also considering the list-context information and question.
�en, the ranking score of the options in the cache can be 
calculated as below.

Where f))�R^(1×τ) and (f))are linear composition matrix and 
bias. τ is vector dimension. [;] denotes the concatenation 
operation. (f)) is the score vector.

and then retain the top-k candidates which are also written to 
disk. Di�erent from them, we incrementally maintain the cache 
memory which only retains the top-k scoring QA pairs. k is a 
hyperparameter. �en, residual path S2 is used to connect the 
QA representation to the �ne ranker, and it contains the 
function of the equation (4).

Where (c) ) represents the    is the matrix 
for top-k QA pairs. (f) denotes the �ne ranker. C is the selection 
function.

 �e residual path S3 indicates that it is used to transfer the 
top-k paragraphs selected in the coarse ranker to the �ne ranker 
layer and generate a vector representation of the passage. Unlike 
the vector representation in the coarse ranker, it only contains 
the content of the passage, not the question. �ese passages are 
derived from the top-k candidate paragraphs to generate list 
context information. �e sorting result is the result of the 
borrowed coarse ranker without repeated calculations. �is 
path can be described by equation (5). Finally, the selected 
passages and representations in the cache are sent to the �ne 
ranker.

Where (f)) is the matrix for top-k passages.(c) is the 
representation for i-th passage, which can be calculated by 
equation (6).

Fine ranker
�e inputs to the �ne ranker are vectors of top-k QA pairs ((f)) 
and top-k passages (f)). �e architecture of the �ne ranker is 
depicted in Figure 2. It incorporates a list-context attention 
mechanism that combines both static and adaptive attention. 

Algorithm 1 �e CPL algorithm  

Input: QA pairs pair, Label l, Cache size n
Output: �e loss values of sub-layers
1: Initialize lists 
2: Get the index pin of positive passages
3: for j ← 0, pair.length − 1 do 
4: 
5: 
6: if j in pin then
7: Update (p_i, p_v, p_) using (((c)),O_j^) and maintain the score (((c)) order
8: else
9: Update (n_i, n_v, n_) using (((c)),O_j^) and maintain the score ((c))) order
10: Maintain the size of the above three ordered lists smaller than (  -pi.length)
11: end if
12: end for
13: Merge two groups of ordered lists (p_i, p_v, p_) and (n_i, n_v, n_) into cache memory (c_i, c_v, c_)
14: Generate the representations (f))  of �ne ranker from passage list
15: Calculate the loss value of two selection processes 

A�er getting the top-k sentences, this model will carry out the 
�ne selection process as described in the Fine Ranker 
subsection. �is model is trained using the log loss of two-level 
selection as shown below.

where yj is the label of the j-th passage. (c)  and (f) are the 
predicted score of j-th passage in the coarse and �ne rankers 
respectively. �en, these two layers are jointly trained to �nd a 
balance between passage selection and joint parameter 
optimization, as shown below.

where λ (We set λ=1.0) is a hyper-parameter to weigh the 
in�uence of the �ne ranker.

 �e asymptotic complexity is described as follows. Assuming 
that all hidden dimensions are ρ, the complexity of matrix (ρ×
ρ)-vector (ρ×1) multiplication is O(ρ2). BERT takes O(Cber). 
For the coarse ranker, calculating the BERT representation of n 
QA pairs and passages takes O(nCber). To maintain the cache, 
we need a top-k sort operation which takes O(nk) at the worst 

case. For the �ne ranker, the list context information requires 
O(ρ2). �e adaptive context information requires O(kρ2). 
�erefore, the total complexity is O(〖nC〗_bert). For BERT, it 
mainly includes matrix-vector multiplication, so the optimized 
calculation requires O(mlρ2). where m is the number of 
matrix-vector multiplications, and l is the sequence length. �e 
computational complexity of this model is still close to that of 
BERT.

Experiments
Datasets
WIKIQIA

�is is a standard open-domain QA dataset. �e questions are 
sampled from the Bing query logs, and the candidate sentences 
are extracted from paragraphs of the associated Wiki pages. 
�is dataset includes 3,047 questions and 29,258 sentences [8], 
where 1,473 candidate passages are labeled as answer sentences. 
Each passage contains only one sentence. We use the standard 
data splits in experiments. Figure 3 visualizes the data 
distribution of this dataset. �e x- and y- axes denote the 
number of candidate sentences and the number of questions 
respectively. �e candidate number of each question ranges 
from 1 to 30 and the average candidate number is 9.6. �e 
average length of question and answer are 6.5 and 25.1 words 
respectively.

Training algorithm
Prior multi-stage retrieval methods typically cascade di�erent 
machine learning techniques. Di�erent from the cascaded 
ranking architecture, we introduce the CPL algorithm to train a 
two-level network for the two-stage retrieval problem. �is 
algorithm performs ranking operations during the training 
process and can optimize the two-stage retrieval processes 
jointly.

 As shown in Algorithm 1, in line 1, this model �rst initializes 
the cache memory. �en, during model training, this model 
adds the ground truth answer to the memory, in line 2. In lines 
3-12, this model maintains the cache memory by coarsely 

selecting the top-k candidates. In lines 4-5, this model calculates 
the matching score based on the BERT representation. If the 
current candidate is a positive answer, its index j, matching 
score (c))  and representation pBert will be added to the cache, 
in line 7. If the current candidate does not match this question, 
this model will maintain the top-k candidates based on their 
scores. In line 13, this model merges the cache memory. In line 
14, this model incorporates the context information of other 
sentences in the �ne ranker to augment the passage 
representation. Finally, this model calculates the loss values of 
coarse and �ne rankers. �en, we can update the model 
parameters by backpropagation using an optimization 
algorithm.

(14)

(15)

(16)

MS MARCO 2.02 

�is is a large-scale machine reading comprehension dataset 
sampled from Bing’s search query logs [9]. We choose the 
dataset for the passage re-ranking task. Given a set of 1000 
passages that have been retrieved using the BM25 algorithm, 
re-rank these passages on their relevance to the query. �is 
dataset was the primary focus of the 2020 and 2019 TREC Deep 
Learning Track. It has also been utilized as a teaching resource 
for the ACM SIGIR/SIGKDD AFIRM Summer School, which 
o�ers courses on Machine Learning for Data Mining and 
Search. Figure 4 visualizes the data distribution of this dataset. 

�e x- and y- axes denote the number of candidate passages and 
the number of questions respectively. �e training set contains 
398,792 questions. �e number of passages in each question 
ranges from 2 to 732. �e question length ranges from 1 to 38 
words. �e passage length ranges from 1 to 362 words. Each 
question average has 100.7 passage candidates. On average, each 
question has one relevant passage. �e development set and test 
set contain 6,980 and 6,837 questions respectively. Each 
question has 1000 passages candidates retrieved with BM25 
from the MS MARCO corpus. In the test set, the question 
length ranges from 2 to 30 words. �e passage length ranges 
from 1 to 287 words.

Hyper-parameters
�is paper employs the BERT-base-uncased model to generate 
representations for sentence pairs. We utilize the output of the 
“[CLS]” token from the �nal layer of BERT as a representation 
of the QA pair. �e projection layer employs a single-layer 
neural network with the hyperbolic tangent activation function 
to generate 200-dimensional vector representations. We use 40 
tokens as the maximum length for questions and 200 tokens for 
answers. �e cache size is set to 15.

 �e AdamW optimization algorithm is used to update the 
model parameters [33]. We �ne-tune the BERT-base-uncased 

model on the passage reranking datasets. �e models run on an 
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (Mem: 330G) 
& 8 Tesla V100s and an Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz (Mem: 256) & 8 RTX 2080Tis.

Evaluation
�is paper uses mean average precision (MAP) and mean 
reciprocal rank (MRR) to evaluate the performance of the 
model. For the MS MARCO 2.0 dataset, we use the o�cial 
script to evaluate our results. �is script calculates the MRR@10 
which considers only the top 10 passages.

n pi.length

Results on the WIKIQA dataset
Table 2 presents the experimental result. Most baseline deep 
learning models typically design e�ective feature extraction 
schemes to better derive features from QA pairs for calculating 
question-answer similarity. �e BERT model has a similar goal 
of mapping a QA pair to a valid representation. �e proposed 
models are the following: 

document and consider all the sentences. Note that this 
setting cannot tackle a situation that has unlimited 
candidates. �e max pooling extracts the document 
information. Because the passage number is less than 30, so 
we can get the max pooling. 

iii. C2Retriever is the proposed model with list and adaptive 
context information.

 We observe that our model outperforms the BERT base and 
improves 1.93% MAP and 0.71% MRR respectively to 
wGRU-sGRU-Gl2-Cnt [5]. Considering the context information 
by max pooling improves 2.88% MAP and 2.92% MRR 
respectively. �is means that considering the document-level 
context information is helpful for each passage. We observe that 
our C2FRetriever improves 6.17% MAP and 6.82% MRR on the 
BERT base model. �is is because our network considers 
context information from other answers. �e sentences of 
WIKIQA come from consecutive sentences in the wiki page 
paragraphs, so other sentences can also provide rich contextual 
information. Our network so�ly incorporates the document 
context information into the sentence representation. 

Results on the MS MARCO 2.0 dataset 
Table 3 lists the results on the MS MARCO 2.0 dataset. 
Compared with the WIKIQA dataset, each passage may contain 
two or more sentences so the passage length varies over a wide 
range. �e passages of any question are from di�erent 
documents retrieved by a search engine, so the continuity of 
passages is also reduced. �is experiment can better test the 
versatility of our method. Nogueira and Cho �ne-tune the 
BERT base and large models and simply use the matching score 
of QA pairs for ranking [37]. Note that they train their models 
on multiple TPUs with appropriate batch size and sequence 
length, which can help to better adapt the representation to the 
target domain. �is device signi�cantly improves model results.

 Our approach potentially enables the usage of BERT based 
ranking model with lower equipment requirements. However, 

the drawback is that we compare the model performance by 
truncating the passage length. We further train our model by 
considering longer sequences (400 tokens) with multiple GPUs. 

Our model achieves further improvement by 1.7%. We achieve 
0.377 on the development set, which improves 3% from the 
TPU BERT base. �e full ranking method achieves the highest 

i. BERT base is the simple BERT model �ne-tuned on the 
WIKIQA dataset. �e inputs to the model are all QA pairs. 

ii. BERT base + MaxPooling denotes the BERT model add the 
max pooling. We organize the QA pairs according to the 

score, but the drawback is that the training process is a 
multi-stage pipeline. In contrast, our model only uses joint 
training and gets the �nal answer in one pass. �is method 
signi�cantly reduces the problem’s complexity.

 Compared with prior works, our approach incorporates the 
context information of other candidates to enhance the passage 
representation. Each query may have hundreds of retrieved 
passages from a large corpus. Our network e�ectively integrates 
the coarse- and �ne-selection processes by simultaneously 
performing model optimization and passage selection in one 
pass.

Ablation study
Table 4 shows the ablation study of the e�ects of di�erent model 
settings. A �rst observation is that the list context and adaptive 
context information are essential for a good result. Removing 
the List context information slightly degrades performance. 
�is indicates that the document-level context is necessary. 
When we train the pipeline model, the result drops (2.7%). �is 
means that joint training is important for the interaction of 
two-level ranking.  To evaluate the in�uence of cache size, we did extensive 

experiments based on di�erent cache sizes, as shown in Figure 
6. We observe that this model achieves higher performance with 
the cache size=16. As the cache size increases, the performance 
improves as it will allow the model to consider more contextual 
information. When we consider many passages, it can hurt 
performance because it introduces noise, so considering all 
candidates is not always a good option. �e choice of cache size 
is important to the result.

 When we replace context information with MaxPooling, the 
result also drops, but it is better than not considering the 
context. �is means considering document-level context 
information is helpful and using MaxPooling is a 
straightforward choice. When we replace MaxPooling with an 
LSTM encoder, the result slightly drops. �is is because the 
passages may not continuous context model and we have the 
long-term dependency problem because we consider all 
pair-wise interactions. When we remove the �ne ranker, the 
result drops. �is suggests that the two-level selection scheme is 
necessary.

 We further analyze the impact of query/passage length and 
number of passages, as shown in Figure 5. We limit the 
maximum length of queries to n tokens. We �nd that, for the 
same length of passage, longer query lengths generally lead to 
better results. However, for shorter query lengths, speci�cally 
when n < 20, longer passage lengths do not always result in 
improved outcomes. Since the meaning of the query is not well 
encoded, longer passages may contain more misleading 
information. �erefore, it is important to interpret and expand 
queries to improve results. We can conclude that an appropriate 
combination of query and paragraph lengths and model 
selection is crucial for the method.

Conclusions and Future Work
In this paper, we present a novel approach to passage reranking 
that incorporates list-context information to enhance the 
representation of passages across di�erent contexts. Unlike 
previous studies, we recognize the signi�cance of list-context 
information from other candidate passages in addressing the 
challenge of incomplete passage semantics and develop a 
method to integrate it e�ectively. Our model addresses the 
limitation of out-of-memory issues by leveraging a cache policy 
learning approach to represent list context. Additionally, we 
address the challenge of two-stage joint retrieval by integrating 
coarse and �ne rankers in a seamless manner. Our model is 

trained by optimizing all components simultaneously, leading 
to the generation of the �nal answer in a single pass, which 
signi�cantly reduces the complexity of the problem.

 �is paper primarily focuses on addressing the challenge of 
incorporating list-context information from other candidates. 
�e model has the potential to be extended to other cascaded 
tasks, such as information extraction and downstream 
applications, in the future [38].
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Passage reranking is a subtask of question answering and 
machine reading comprehension that involves retrieving one or 
several passages (text options) that can best answer a given 
question [1]. Each passage contains one or several sentences, as 

shown in Table 1. �e most common approach is to model the 
question-answer (QA) pair [2], and then compute various 
similarity measures between obtained representations. 
Finally, we can choose the high-score candidates as the 
answer. 

each passage by considering the context information from other 
candidates can lead to more con�dent results. We use 
“list-context” across di�erent passages to di�erentiate the 
“context” that is o�en discussed in the same QA pair. 
Context-independent representations may limit passage 
semantics when other passages provide useful context 
information for the question. For example, passage A in Table 1 
explains that “cardiovascular disease” refers to heart disease. 
Although passage C does not mention heart disease, we can still 
derive relevant information from passage A.

 Modeling list-context is a nontrivial task. �e �rst challenge 
is to emphasize the comparative and reference information. 
Previous studies have tackled this challenge by utilizing 
hierarchical gated recurrent unit recurrent neural networks 
(GRU RNNs) to consider context information among sentences 
[5]. However, they did not explicitly enhance sentence 
representation by leveraging other candidates. Another 
approach is multi-mention learning, which models multiple 
mentions in a document to answer questions [6]. While these 
methods have made signi�cant contributions, they do not 
explicitly model the context information in the passage list. To 
address this limitation, we propose a list-context attention 
mechanism composed of static attention and adaptive attention. 
�is mechanism injects list context information into the 
passage, allowing each candidate to consider the whole list 
semantics by attending to all the candidates. Additionally, 
adaptive attention enables each passage to adaptively interact 
with other candidates by considering their correlation 
information.

 �e second challenge is the large number of candidate 
passages. It’s di�cult to analyze thousands of passages 
simultaneously without running into technical issues. Previous 
research typically broke down a long list of passages into smaller 
parts and then created a context-independent representation of 
each sentence pair. �is approach o�en relies on a multi-stage 
retrieval architecture [7], where the candidate documents are 
repeatedly narrowed down and reordered. Our paper addresses 
this issue by applying a two-stage retrieval approach to the 
neural model. Unlike previous methods, our model streamlines 
the multi-stage process into a two-level (coarse-to-�ne) model. 
First, it selects a good passage set roughly, and then it �netunes 
the selection by ignoring irrelevant instances that are far from 
the classi�cation hyperplane. By training two layers of model 
parameters jointly, our approach enables them to collaborate 
and interact more e�ectively.

 We introduce a cache policy learning (CPL) algorithm to 
model the two-level selection process end-to-end. �e coarse 
selection sub-process uses a scoring function to rank the 
sentences in the cache memory and dynamically selects the 
top-k scoring sentences for further processing. In addition to 
the coarse selection sub-process, our model also incorporates a 
�ne ranker to further re�ne the representations. Our model 
performs passage reranking and parameter optimization 
simultaneously. We conduct experiments on the WIKIQA and 
MS MARCO 2.0 datasets [8,9]. �e results show the 
e�ectiveness of our approach. �e distinctive properties of this 
paper are as follows:

i. �is paper introduces the idea of enhancing passage 
representation by considering context information from 
other candidates. 

ii. �is paper proposes a list-context attention mechanism, 
composed of static attention and adaptive attention, to 
model list-context information. 

iii. �is paper introduces a C2FRetriever with a cache policy 
learning algorithm, which can select answers from a coarse 
to �ne level in a single pass. �e experimental results 
demonstrate the good performance of the proposed 
method.

Related Work
Previous work employs deep learning models to enhance 
sentence representations and compute their similarity. 
Rocktäschel et al. propose a textual entailment model that 
models word relations between sentences by using 
word-to-word attention on an LSTM-RNN [10]. Severyn and 
Moschitti propose CNNR to consider overlapping words to 
encode relational information between question and answer 
[2]. Yin et al. propose 3 attention methods on a CNN model 
(ABCNN) to encode mutual interactions between sentences 
[11]. Miller et al. propose key-value memory networks 
(KV-MemeNN) to select answers by using key-value structured 
facts in the model memory [12]. Wang et al. propose a bilateral 
multi-view matching (BiMPM) model [13], which utilizes an 
attention mechanism to model the mutual interaction of 
sentences at di�erent scales. Bachrach et al. apply two attention 
operations to capture more word-level contextual information, 
but their work still focuses on enhancing sentence-pair 
representations without considering list-level contextual 
information [14]. A work close to ours is the hierarchical 
GRU-RNN [5], which is used to model word-level and 
sentence-level matching and provide a kind of contextual 
information. However, their approach does not explicitly 
enhance sentence representations by using contextual 
information from other candidates. Our approach incorporates 
list-context information to augment sentence representation. 
Ran et al. propose an option comparison network (OCN) for 
multiple choice reading comprehension (MCRC) [15].

 Guo et al. propose the deep dependent matching model 
(DRMM), which introduces a histogram pooling technique to 
summarize the translation matrix [16]. Xiong et al. propose 
KNRM, which uses a kernel pooling layer to so�ly compute the 
frequency of word pairs at di�erent similarity levels [17]. 
MARCO’s o�cial baseline uses two separate DNNs to model 
query-document relevance using local and distributed 
representations, respectively [18]. Conv-KNRM enhances 
KNRM by utilizing CNN to compose n-gram embeddings from 
word embeddings and cross-matched n-grams of di�erent 
lengths [19]. SAN + BERT base maintains a state and iteratively 
re�nes its predictions [20].

 Previous work mainly uses a multi-stage retrieval 
architecture in web search systems [7]. A set of candidate 
documents is generated using a series of increasingly expensive 
machine-learning techniques. present a method for optimizing 
cascaded ranking models [21]. BERT is a pre-trained language 
model based on the bidirectional Transformer architecture 
[22-26]. It has been demonstrated to be highly e�ective in 
generating rich representations for pairs of sentences. BERT 
o�ers a means to directly model the interactions between 
passages. Sentence-BERT (SBERT) is an improved model based 
on BERT and RoBERTa that is used to e�ciently calculate the 
similarity between sentences [27]. It is trained through siamese 

 Recent studies have improved the quality of general text 
embeddings for representing passages. BAAI general 
embedding (BGE) utilizes the RetroMAE approach for 
pre-training and employs contrastive learning for �ne-tuning 
[3]. Moreover, online services such as OpenAI’s text embedding 
and Cohere-V3 generate text embeddings through their API 
[4]. While previous work has o�en focused on enriching text 
embeddings or enhancing the interaction between 
question-answer pairs, they have rarely considered the in�uence 

of other candidates. As a result, the relationships between 
candidates have not been fully explored. When humans select 
an answer, they consider not only whether each individual 
passage aligns with the question but also the presence of 
superior alternatives. Especially when the passages are derived 
from the same document or related documents, their 
semantics are o�en incomplete, and other candidates may 
contain valuable information that can supplement and 
interpret the current passage. Enriching the representation of 

and triplet network architecture, making the representation of 
sentences in vector space more suitable for cosine-similarity 
calculations. KEPLER proposes a method to jointly optimize 
knowledge embedding (KE) and pre-trained language model 
(PLM) [28]. �is means that the model simultaneously learns 
how to extract relational facts from the knowledge graph and 
how to understand language patterns from text during training.

 General text embedding techniques are commonly 
employed for web search and question answering, and they are 
also used to enhance the capabilities of large language models 
[1,29,30]. BGE adopts the RetroMAE method for pre-training 
and leverages contrastive learning for �ne-tuning [3]. OpenAI 
text embedding produces high-quality text and code vector 
representations through contrastive pre-training on large 
amounts of unsupervised data [4]. Cohere-v31  improves the 
quality of text embeddings by evaluating how well the query 
matches the document’s topic and assessing the overall quality 
of the content. However, when the document is segmented, it is 
easy to cause semantic incompleteness. �e above 
state-of-the-art method only enhances the text embeddings of a 
single passage and cannot obtain supplementary semantic 
information from other passages belonging to the same 
document. Our method provides complementary information 
between passages by modeling the relationship between 
passages in the same document. Our C2FRetriever is trained in 
an end-to-end manner so that the parameters of the coarse 
ranker and �ne ranker can be jointly optimized for better 
collaboration between the two levels.
1https://huggingface.co/Cohere  

Approach
Suppose we have a question Q with l tokens {                           }, 
and a candidate answer set O with n passages {                       }. n 
is the number of passages that can vary over a wide range 
(1~1000). Each passage    contains one or several sentences 
(passage) which consists of      tokens {                          }. �e label 
yi ∈ {0, 1} with 1 denotes a positive answer and 0 otherwise. �e 
goal of the model is to score each passage based on how well it 
answers the question and then rank the passages based on the 
score.

 Our main e�ort lies in designing a deep learning architecture 
that enhances representations by considering the contextual 
information of other candidates. Its main building block has 
two layers, the coarse ranker and the �ne ranker. In the 
following, we �rst describe the two layers and then describe the 
training algorithm.

Coarse ranker
�e architecture of the coarse ranker is shown in the lower part 
of Figure 1. �is layer aims to �lter some answers that are 
irrelevant to the given question to generate an intermediate set 
for performing �ne selection. We use a BERT model to generate 
representations of QA pairs and a single-layer neural network to 
compute matching scores [22]. 

Passage Oi is concatenated with question Q to form a complete 
sequence, denoted as ⟨[CLS]; Q; [SEP]; Oi; [SEP]⟩.

    
where              is the QA representation. Fbert denotes the 
network de�ned in Devlin et al. [22]. �e representations are 

then projected to matching scores using a single layer neural 
network.

Where W^c∈ R^(d and b^c is a scalar. σ is the sigmoid 
activation function. �is layer takes all QA pairs as input          
[(Q, O1), (Q, O2), ..., (Q, O   ], and then the model assigns a 
score to each candidate.

 Modeling all candidates directly will result in 
out-of-memory issues due to the large amount of list-context 
information that needs to be processed simultaneously. �e 
model parameter size is very large, and the gradient state 
retained during the optimization process will double the 
memory usage. To solve this problem, we propose using 
di�erent paths and caching mechanisms. Each path represents a 
di�erent function that processes the data in a way that reduces 
memory usage. �e coarse ranker creates a cache used to store 
the top-k passages it has encountered previously. According to 
p_, passages are dynamically ranked through path S1, which 
contains the function listed below.

where h0 is the initial state of the empty cache. ht is the cache 
state a�er t step update and contains the selected passages. K 
denotes the ranking function.

 Prior early-stage models typically process all the candidates 

Static attention
To capture and compose the context semantics from the answer 
list, our model uses an attention mechanism which achieves the 
best performance in di�erent alternatives to obtain the 
list-context representation [31,32]. �is method extracts 
informative passages and aggregates their representations to 
form the list-context representation V. �is method �rst 
measures the weight of each passage in the list context. 

where Cl ∈Rd is the context vector that can be jointly trained. 
�en, this model computes the normalized weight of each 
passage through a so�max function and aggregates these 
representations.

where max(u) gets the max value of [u_0, u_1, ..., u] where k is 
the candidate number. �is operation encodes the list context 
into a vector which summarizes the main semantics of this list. 
�is allows the model to so�ly consider all candidates in the 
entire list.

Where V  is the list-context representation.

Adaptive attention
While the static attention supplements the list-context 
information for each passage, V  is the same for all candidates 
and does not consider the question. Ideally, we would like to 
overcome the above two problems, by considering list-context 
information and adaptively incorporating the context 
information for each passage based on the question. Our model 
resolves this problem by using adaptive attention which injects 
the correlation information of passages into passage 
representation directly, as shown in Figure 2. �is method �rst 
computes the correlation weight between these passages by 
considering the semantic similarity of the QA pair and the 
list-context information. 

       
�en, this method obtains normalized correlation weights 
through a so�max function.
 

�e adaptive context representation is obtained by calculating 
the weighted sum of the passage representations.

where Z is the adaptive context of i-th passage. By using this 
attention scheme, each passage has a set of adaptive correlation 
weights with other candidates. �is correlation information can 
aggregate the passage representations �exibly. �is interaction 
operation encodes the correlation between candidates while 
also considering the list-context information and question.
�en, the ranking score of the options in the cache can be 
calculated as below.

Where f))�R^(1×τ) and (f))are linear composition matrix and 
bias. τ is vector dimension. [;] denotes the concatenation 
operation. (f)) is the score vector.

and then retain the top-k candidates which are also written to 
disk. Di�erent from them, we incrementally maintain the cache 
memory which only retains the top-k scoring QA pairs. k is a 
hyperparameter. �en, residual path S2 is used to connect the 
QA representation to the �ne ranker, and it contains the 
function of the equation (4).

Where (c) ) represents the    is the matrix 
for top-k QA pairs. (f) denotes the �ne ranker. C is the selection 
function.

 �e residual path S3 indicates that it is used to transfer the 
top-k paragraphs selected in the coarse ranker to the �ne ranker 
layer and generate a vector representation of the passage. Unlike 
the vector representation in the coarse ranker, it only contains 
the content of the passage, not the question. �ese passages are 
derived from the top-k candidate paragraphs to generate list 
context information. �e sorting result is the result of the 
borrowed coarse ranker without repeated calculations. �is 
path can be described by equation (5). Finally, the selected 
passages and representations in the cache are sent to the �ne 
ranker.

Where (f)) is the matrix for top-k passages.(c) is the 
representation for i-th passage, which can be calculated by 
equation (6).

Fine ranker
�e inputs to the �ne ranker are vectors of top-k QA pairs ((f)) 
and top-k passages (f)). �e architecture of the �ne ranker is 
depicted in Figure 2. It incorporates a list-context attention 
mechanism that combines both static and adaptive attention. 

A�er getting the top-k sentences, this model will carry out the 
�ne selection process as described in the Fine Ranker 
subsection. �is model is trained using the log loss of two-level 
selection as shown below.

where yj is the label of the j-th passage. (c)  and (f) are the 
predicted score of j-th passage in the coarse and �ne rankers 
respectively. �en, these two layers are jointly trained to �nd a 
balance between passage selection and joint parameter 
optimization, as shown below.

where λ (We set λ=1.0) is a hyper-parameter to weigh the 
in�uence of the �ne ranker.

 �e asymptotic complexity is described as follows. Assuming 
that all hidden dimensions are ρ, the complexity of matrix (ρ×
ρ)-vector (ρ×1) multiplication is O(ρ2). BERT takes O(Cber). 
For the coarse ranker, calculating the BERT representation of n 
QA pairs and passages takes O(nCber). To maintain the cache, 
we need a top-k sort operation which takes O(nk) at the worst 

case. For the �ne ranker, the list context information requires 
O(ρ2). �e adaptive context information requires O(kρ2). 
�erefore, the total complexity is O(〖nC〗_bert). For BERT, it 
mainly includes matrix-vector multiplication, so the optimized 
calculation requires O(mlρ2). where m is the number of 
matrix-vector multiplications, and l is the sequence length. �e 
computational complexity of this model is still close to that of 
BERT.

Experiments
Datasets
WIKIQIA

�is is a standard open-domain QA dataset. �e questions are 
sampled from the Bing query logs, and the candidate sentences 
are extracted from paragraphs of the associated Wiki pages. 
�is dataset includes 3,047 questions and 29,258 sentences [8], 
where 1,473 candidate passages are labeled as answer sentences. 
Each passage contains only one sentence. We use the standard 
data splits in experiments. Figure 3 visualizes the data 
distribution of this dataset. �e x- and y- axes denote the 
number of candidate sentences and the number of questions 
respectively. �e candidate number of each question ranges 
from 1 to 30 and the average candidate number is 9.6. �e 
average length of question and answer are 6.5 and 25.1 words 
respectively.

Training algorithm
Prior multi-stage retrieval methods typically cascade di�erent 
machine learning techniques. Di�erent from the cascaded 
ranking architecture, we introduce the CPL algorithm to train a 
two-level network for the two-stage retrieval problem. �is 
algorithm performs ranking operations during the training 
process and can optimize the two-stage retrieval processes 
jointly.

 As shown in Algorithm 1, in line 1, this model �rst initializes 
the cache memory. �en, during model training, this model 
adds the ground truth answer to the memory, in line 2. In lines 
3-12, this model maintains the cache memory by coarsely 

selecting the top-k candidates. In lines 4-5, this model calculates 
the matching score based on the BERT representation. If the 
current candidate is a positive answer, its index j, matching 
score (c))  and representation pBert will be added to the cache, 
in line 7. If the current candidate does not match this question, 
this model will maintain the top-k candidates based on their 
scores. In line 13, this model merges the cache memory. In line 
14, this model incorporates the context information of other 
sentences in the �ne ranker to augment the passage 
representation. Finally, this model calculates the loss values of 
coarse and �ne rankers. �en, we can update the model 
parameters by backpropagation using an optimization 
algorithm.

MS MARCO 2.02 

�is is a large-scale machine reading comprehension dataset 
sampled from Bing’s search query logs [9]. We choose the 
dataset for the passage re-ranking task. Given a set of 1000 
passages that have been retrieved using the BM25 algorithm, 
re-rank these passages on their relevance to the query. �is 
dataset was the primary focus of the 2020 and 2019 TREC Deep 
Learning Track. It has also been utilized as a teaching resource 
for the ACM SIGIR/SIGKDD AFIRM Summer School, which 
o�ers courses on Machine Learning for Data Mining and 
Search. Figure 4 visualizes the data distribution of this dataset. 

�e x- and y- axes denote the number of candidate passages and 
the number of questions respectively. �e training set contains 
398,792 questions. �e number of passages in each question 
ranges from 2 to 732. �e question length ranges from 1 to 38 
words. �e passage length ranges from 1 to 362 words. Each 
question average has 100.7 passage candidates. On average, each 
question has one relevant passage. �e development set and test 
set contain 6,980 and 6,837 questions respectively. Each 
question has 1000 passages candidates retrieved with BM25 
from the MS MARCO corpus. In the test set, the question 
length ranges from 2 to 30 words. �e passage length ranges 
from 1 to 287 words.

Hyper-parameters
�is paper employs the BERT-base-uncased model to generate 
representations for sentence pairs. We utilize the output of the 
“[CLS]” token from the �nal layer of BERT as a representation 
of the QA pair. �e projection layer employs a single-layer 
neural network with the hyperbolic tangent activation function 
to generate 200-dimensional vector representations. We use 40 
tokens as the maximum length for questions and 200 tokens for 
answers. �e cache size is set to 15.

 �e AdamW optimization algorithm is used to update the 
model parameters [33]. We �ne-tune the BERT-base-uncased 

model on the passage reranking datasets. �e models run on an 
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (Mem: 330G) 
& 8 Tesla V100s and an Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz (Mem: 256) & 8 RTX 2080Tis.

Evaluation
�is paper uses mean average precision (MAP) and mean 
reciprocal rank (MRR) to evaluate the performance of the 
model. For the MS MARCO 2.0 dataset, we use the o�cial 
script to evaluate our results. �is script calculates the MRR@10 
which considers only the top 10 passages.

Figure 3. Passage distribution of the WIKIA dataset.

Figure 4. Passage distribution of the MS MARCO 2.0 dataset.

Results on the WIKIQA dataset
Table 2 presents the experimental result. Most baseline deep 
learning models typically design e�ective feature extraction 
schemes to better derive features from QA pairs for calculating 
question-answer similarity. �e BERT model has a similar goal 
of mapping a QA pair to a valid representation. �e proposed 
models are the following: 

document and consider all the sentences. Note that this 
setting cannot tackle a situation that has unlimited 
candidates. �e max pooling extracts the document 
information. Because the passage number is less than 30, so 
we can get the max pooling. 

iii. C2Retriever is the proposed model with list and adaptive 
context information.

 We observe that our model outperforms the BERT base and 
improves 1.93% MAP and 0.71% MRR respectively to 
wGRU-sGRU-Gl2-Cnt [5]. Considering the context information 
by max pooling improves 2.88% MAP and 2.92% MRR 
respectively. �is means that considering the document-level 
context information is helpful for each passage. We observe that 
our C2FRetriever improves 6.17% MAP and 6.82% MRR on the 
BERT base model. �is is because our network considers 
context information from other answers. �e sentences of 
WIKIQA come from consecutive sentences in the wiki page 
paragraphs, so other sentences can also provide rich contextual 
information. Our network so�ly incorporates the document 
context information into the sentence representation. 

Results on the MS MARCO 2.0 dataset 
Table 3 lists the results on the MS MARCO 2.0 dataset. 
Compared with the WIKIQA dataset, each passage may contain 
two or more sentences so the passage length varies over a wide 
range. �e passages of any question are from di�erent 
documents retrieved by a search engine, so the continuity of 
passages is also reduced. �is experiment can better test the 
versatility of our method. Nogueira and Cho �ne-tune the 
BERT base and large models and simply use the matching score 
of QA pairs for ranking [37]. Note that they train their models 
on multiple TPUs with appropriate batch size and sequence 
length, which can help to better adapt the representation to the 
target domain. �is device signi�cantly improves model results.

 Our approach potentially enables the usage of BERT based 
ranking model with lower equipment requirements. However, 

the drawback is that we compare the model performance by 
truncating the passage length. We further train our model by 
considering longer sequences (400 tokens) with multiple GPUs. 

Our model achieves further improvement by 1.7%. We achieve 
0.377 on the development set, which improves 3% from the 
TPU BERT base. �e full ranking method achieves the highest 

i. BERT base is the simple BERT model �ne-tuned on the 
WIKIQA dataset. �e inputs to the model are all QA pairs. 

ii. BERT base + MaxPooling denotes the BERT model add the 
max pooling. We organize the QA pairs according to the 

score, but the drawback is that the training process is a 
multi-stage pipeline. In contrast, our model only uses joint 
training and gets the �nal answer in one pass. �is method 
signi�cantly reduces the problem’s complexity.

 Compared with prior works, our approach incorporates the 
context information of other candidates to enhance the passage 
representation. Each query may have hundreds of retrieved 
passages from a large corpus. Our network e�ectively integrates 
the coarse- and �ne-selection processes by simultaneously 
performing model optimization and passage selection in one 
pass.

Ablation study
Table 4 shows the ablation study of the e�ects of di�erent model 
settings. A �rst observation is that the list context and adaptive 
context information are essential for a good result. Removing 
the List context information slightly degrades performance. 
�is indicates that the document-level context is necessary. 
When we train the pipeline model, the result drops (2.7%). �is 
means that joint training is important for the interaction of 
two-level ranking.  To evaluate the in�uence of cache size, we did extensive 

experiments based on di�erent cache sizes, as shown in Figure 
6. We observe that this model achieves higher performance with 
the cache size=16. As the cache size increases, the performance 
improves as it will allow the model to consider more contextual 
information. When we consider many passages, it can hurt 
performance because it introduces noise, so considering all 
candidates is not always a good option. �e choice of cache size 
is important to the result.

 When we replace context information with MaxPooling, the 
result also drops, but it is better than not considering the 
context. �is means considering document-level context 
information is helpful and using MaxPooling is a 
straightforward choice. When we replace MaxPooling with an 
LSTM encoder, the result slightly drops. �is is because the 
passages may not continuous context model and we have the 
long-term dependency problem because we consider all 
pair-wise interactions. When we remove the �ne ranker, the 
result drops. �is suggests that the two-level selection scheme is 
necessary.

 We further analyze the impact of query/passage length and 
number of passages, as shown in Figure 5. We limit the 
maximum length of queries to n tokens. We �nd that, for the 
same length of passage, longer query lengths generally lead to 
better results. However, for shorter query lengths, speci�cally 
when n < 20, longer passage lengths do not always result in 
improved outcomes. Since the meaning of the query is not well 
encoded, longer passages may contain more misleading 
information. �erefore, it is important to interpret and expand 
queries to improve results. We can conclude that an appropriate 
combination of query and paragraph lengths and model 
selection is crucial for the method.

Conclusions and Future Work
In this paper, we present a novel approach to passage reranking 
that incorporates list-context information to enhance the 
representation of passages across di�erent contexts. Unlike 
previous studies, we recognize the signi�cance of list-context 
information from other candidate passages in addressing the 
challenge of incomplete passage semantics and develop a 
method to integrate it e�ectively. Our model addresses the 
limitation of out-of-memory issues by leveraging a cache policy 
learning approach to represent list context. Additionally, we 
address the challenge of two-stage joint retrieval by integrating 
coarse and �ne rankers in a seamless manner. Our model is 

trained by optimizing all components simultaneously, leading 
to the generation of the �nal answer in a single pass, which 
signi�cantly reduces the complexity of the problem.

 �is paper primarily focuses on addressing the challenge of 
incorporating list-context information from other candidates. 
�e model has the potential to be extended to other cascaded 
tasks, such as information extraction and downstream 
applications, in the future [38].
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Passage reranking is a subtask of question answering and 
machine reading comprehension that involves retrieving one or 
several passages (text options) that can best answer a given 
question [1]. Each passage contains one or several sentences, as 

shown in Table 1. �e most common approach is to model the 
question-answer (QA) pair [2], and then compute various 
similarity measures between obtained representations. 
Finally, we can choose the high-score candidates as the 
answer. 

each passage by considering the context information from other 
candidates can lead to more con�dent results. We use 
“list-context” across di�erent passages to di�erentiate the 
“context” that is o�en discussed in the same QA pair. 
Context-independent representations may limit passage 
semantics when other passages provide useful context 
information for the question. For example, passage A in Table 1 
explains that “cardiovascular disease” refers to heart disease. 
Although passage C does not mention heart disease, we can still 
derive relevant information from passage A.

 Modeling list-context is a nontrivial task. �e �rst challenge 
is to emphasize the comparative and reference information. 
Previous studies have tackled this challenge by utilizing 
hierarchical gated recurrent unit recurrent neural networks 
(GRU RNNs) to consider context information among sentences 
[5]. However, they did not explicitly enhance sentence 
representation by leveraging other candidates. Another 
approach is multi-mention learning, which models multiple 
mentions in a document to answer questions [6]. While these 
methods have made signi�cant contributions, they do not 
explicitly model the context information in the passage list. To 
address this limitation, we propose a list-context attention 
mechanism composed of static attention and adaptive attention. 
�is mechanism injects list context information into the 
passage, allowing each candidate to consider the whole list 
semantics by attending to all the candidates. Additionally, 
adaptive attention enables each passage to adaptively interact 
with other candidates by considering their correlation 
information.

 �e second challenge is the large number of candidate 
passages. It’s di�cult to analyze thousands of passages 
simultaneously without running into technical issues. Previous 
research typically broke down a long list of passages into smaller 
parts and then created a context-independent representation of 
each sentence pair. �is approach o�en relies on a multi-stage 
retrieval architecture [7], where the candidate documents are 
repeatedly narrowed down and reordered. Our paper addresses 
this issue by applying a two-stage retrieval approach to the 
neural model. Unlike previous methods, our model streamlines 
the multi-stage process into a two-level (coarse-to-�ne) model. 
First, it selects a good passage set roughly, and then it �netunes 
the selection by ignoring irrelevant instances that are far from 
the classi�cation hyperplane. By training two layers of model 
parameters jointly, our approach enables them to collaborate 
and interact more e�ectively.

 We introduce a cache policy learning (CPL) algorithm to 
model the two-level selection process end-to-end. �e coarse 
selection sub-process uses a scoring function to rank the 
sentences in the cache memory and dynamically selects the 
top-k scoring sentences for further processing. In addition to 
the coarse selection sub-process, our model also incorporates a 
�ne ranker to further re�ne the representations. Our model 
performs passage reranking and parameter optimization 
simultaneously. We conduct experiments on the WIKIQA and 
MS MARCO 2.0 datasets [8,9]. �e results show the 
e�ectiveness of our approach. �e distinctive properties of this 
paper are as follows:

i. �is paper introduces the idea of enhancing passage 
representation by considering context information from 
other candidates. 

ii. �is paper proposes a list-context attention mechanism, 
composed of static attention and adaptive attention, to 
model list-context information. 

iii. �is paper introduces a C2FRetriever with a cache policy 
learning algorithm, which can select answers from a coarse 
to �ne level in a single pass. �e experimental results 
demonstrate the good performance of the proposed 
method.

Related Work
Previous work employs deep learning models to enhance 
sentence representations and compute their similarity. 
Rocktäschel et al. propose a textual entailment model that 
models word relations between sentences by using 
word-to-word attention on an LSTM-RNN [10]. Severyn and 
Moschitti propose CNNR to consider overlapping words to 
encode relational information between question and answer 
[2]. Yin et al. propose 3 attention methods on a CNN model 
(ABCNN) to encode mutual interactions between sentences 
[11]. Miller et al. propose key-value memory networks 
(KV-MemeNN) to select answers by using key-value structured 
facts in the model memory [12]. Wang et al. propose a bilateral 
multi-view matching (BiMPM) model [13], which utilizes an 
attention mechanism to model the mutual interaction of 
sentences at di�erent scales. Bachrach et al. apply two attention 
operations to capture more word-level contextual information, 
but their work still focuses on enhancing sentence-pair 
representations without considering list-level contextual 
information [14]. A work close to ours is the hierarchical 
GRU-RNN [5], which is used to model word-level and 
sentence-level matching and provide a kind of contextual 
information. However, their approach does not explicitly 
enhance sentence representations by using contextual 
information from other candidates. Our approach incorporates 
list-context information to augment sentence representation. 
Ran et al. propose an option comparison network (OCN) for 
multiple choice reading comprehension (MCRC) [15].

 Guo et al. propose the deep dependent matching model 
(DRMM), which introduces a histogram pooling technique to 
summarize the translation matrix [16]. Xiong et al. propose 
KNRM, which uses a kernel pooling layer to so�ly compute the 
frequency of word pairs at di�erent similarity levels [17]. 
MARCO’s o�cial baseline uses two separate DNNs to model 
query-document relevance using local and distributed 
representations, respectively [18]. Conv-KNRM enhances 
KNRM by utilizing CNN to compose n-gram embeddings from 
word embeddings and cross-matched n-grams of di�erent 
lengths [19]. SAN + BERT base maintains a state and iteratively 
re�nes its predictions [20].

 Previous work mainly uses a multi-stage retrieval 
architecture in web search systems [7]. A set of candidate 
documents is generated using a series of increasingly expensive 
machine-learning techniques. present a method for optimizing 
cascaded ranking models [21]. BERT is a pre-trained language 
model based on the bidirectional Transformer architecture 
[22-26]. It has been demonstrated to be highly e�ective in 
generating rich representations for pairs of sentences. BERT 
o�ers a means to directly model the interactions between 
passages. Sentence-BERT (SBERT) is an improved model based 
on BERT and RoBERTa that is used to e�ciently calculate the 
similarity between sentences [27]. It is trained through siamese 

 Recent studies have improved the quality of general text 
embeddings for representing passages. BAAI general 
embedding (BGE) utilizes the RetroMAE approach for 
pre-training and employs contrastive learning for �ne-tuning 
[3]. Moreover, online services such as OpenAI’s text embedding 
and Cohere-V3 generate text embeddings through their API 
[4]. While previous work has o�en focused on enriching text 
embeddings or enhancing the interaction between 
question-answer pairs, they have rarely considered the in�uence 

of other candidates. As a result, the relationships between 
candidates have not been fully explored. When humans select 
an answer, they consider not only whether each individual 
passage aligns with the question but also the presence of 
superior alternatives. Especially when the passages are derived 
from the same document or related documents, their 
semantics are o�en incomplete, and other candidates may 
contain valuable information that can supplement and 
interpret the current passage. Enriching the representation of 

and triplet network architecture, making the representation of 
sentences in vector space more suitable for cosine-similarity 
calculations. KEPLER proposes a method to jointly optimize 
knowledge embedding (KE) and pre-trained language model 
(PLM) [28]. �is means that the model simultaneously learns 
how to extract relational facts from the knowledge graph and 
how to understand language patterns from text during training.

 General text embedding techniques are commonly 
employed for web search and question answering, and they are 
also used to enhance the capabilities of large language models 
[1,29,30]. BGE adopts the RetroMAE method for pre-training 
and leverages contrastive learning for �ne-tuning [3]. OpenAI 
text embedding produces high-quality text and code vector 
representations through contrastive pre-training on large 
amounts of unsupervised data [4]. Cohere-v31  improves the 
quality of text embeddings by evaluating how well the query 
matches the document’s topic and assessing the overall quality 
of the content. However, when the document is segmented, it is 
easy to cause semantic incompleteness. �e above 
state-of-the-art method only enhances the text embeddings of a 
single passage and cannot obtain supplementary semantic 
information from other passages belonging to the same 
document. Our method provides complementary information 
between passages by modeling the relationship between 
passages in the same document. Our C2FRetriever is trained in 
an end-to-end manner so that the parameters of the coarse 
ranker and �ne ranker can be jointly optimized for better 
collaboration between the two levels.
1https://huggingface.co/Cohere  

Approach
Suppose we have a question Q with l tokens {                           }, 
and a candidate answer set O with n passages {                       }. n 
is the number of passages that can vary over a wide range 
(1~1000). Each passage    contains one or several sentences 
(passage) which consists of      tokens {                          }. �e label 
yi ∈ {0, 1} with 1 denotes a positive answer and 0 otherwise. �e 
goal of the model is to score each passage based on how well it 
answers the question and then rank the passages based on the 
score.

 Our main e�ort lies in designing a deep learning architecture 
that enhances representations by considering the contextual 
information of other candidates. Its main building block has 
two layers, the coarse ranker and the �ne ranker. In the 
following, we �rst describe the two layers and then describe the 
training algorithm.

Coarse ranker
�e architecture of the coarse ranker is shown in the lower part 
of Figure 1. �is layer aims to �lter some answers that are 
irrelevant to the given question to generate an intermediate set 
for performing �ne selection. We use a BERT model to generate 
representations of QA pairs and a single-layer neural network to 
compute matching scores [22]. 

Passage Oi is concatenated with question Q to form a complete 
sequence, denoted as ⟨[CLS]; Q; [SEP]; Oi; [SEP]⟩.

    
where              is the QA representation. Fbert denotes the 
network de�ned in Devlin et al. [22]. �e representations are 

then projected to matching scores using a single layer neural 
network.

Where W^c∈ R^(d and b^c is a scalar. σ is the sigmoid 
activation function. �is layer takes all QA pairs as input          
[(Q, O1), (Q, O2), ..., (Q, O   ], and then the model assigns a 
score to each candidate.

 Modeling all candidates directly will result in 
out-of-memory issues due to the large amount of list-context 
information that needs to be processed simultaneously. �e 
model parameter size is very large, and the gradient state 
retained during the optimization process will double the 
memory usage. To solve this problem, we propose using 
di�erent paths and caching mechanisms. Each path represents a 
di�erent function that processes the data in a way that reduces 
memory usage. �e coarse ranker creates a cache used to store 
the top-k passages it has encountered previously. According to 
p_, passages are dynamically ranked through path S1, which 
contains the function listed below.

where h0 is the initial state of the empty cache. ht is the cache 
state a�er t step update and contains the selected passages. K 
denotes the ranking function.

 Prior early-stage models typically process all the candidates 

Static attention
To capture and compose the context semantics from the answer 
list, our model uses an attention mechanism which achieves the 
best performance in di�erent alternatives to obtain the 
list-context representation [31,32]. �is method extracts 
informative passages and aggregates their representations to 
form the list-context representation V. �is method �rst 
measures the weight of each passage in the list context. 

where Cl ∈Rd is the context vector that can be jointly trained. 
�en, this model computes the normalized weight of each 
passage through a so�max function and aggregates these 
representations.

where max(u) gets the max value of [u_0, u_1, ..., u] where k is 
the candidate number. �is operation encodes the list context 
into a vector which summarizes the main semantics of this list. 
�is allows the model to so�ly consider all candidates in the 
entire list.

Where V  is the list-context representation.

Adaptive attention
While the static attention supplements the list-context 
information for each passage, V  is the same for all candidates 
and does not consider the question. Ideally, we would like to 
overcome the above two problems, by considering list-context 
information and adaptively incorporating the context 
information for each passage based on the question. Our model 
resolves this problem by using adaptive attention which injects 
the correlation information of passages into passage 
representation directly, as shown in Figure 2. �is method �rst 
computes the correlation weight between these passages by 
considering the semantic similarity of the QA pair and the 
list-context information. 

       
�en, this method obtains normalized correlation weights 
through a so�max function.
 

�e adaptive context representation is obtained by calculating 
the weighted sum of the passage representations.

where Z is the adaptive context of i-th passage. By using this 
attention scheme, each passage has a set of adaptive correlation 
weights with other candidates. �is correlation information can 
aggregate the passage representations �exibly. �is interaction 
operation encodes the correlation between candidates while 
also considering the list-context information and question.
�en, the ranking score of the options in the cache can be 
calculated as below.

Where f))�R^(1×τ) and (f))are linear composition matrix and 
bias. τ is vector dimension. [;] denotes the concatenation 
operation. (f)) is the score vector.

and then retain the top-k candidates which are also written to 
disk. Di�erent from them, we incrementally maintain the cache 
memory which only retains the top-k scoring QA pairs. k is a 
hyperparameter. �en, residual path S2 is used to connect the 
QA representation to the �ne ranker, and it contains the 
function of the equation (4).

Where (c) ) represents the    is the matrix 
for top-k QA pairs. (f) denotes the �ne ranker. C is the selection 
function.

 �e residual path S3 indicates that it is used to transfer the 
top-k paragraphs selected in the coarse ranker to the �ne ranker 
layer and generate a vector representation of the passage. Unlike 
the vector representation in the coarse ranker, it only contains 
the content of the passage, not the question. �ese passages are 
derived from the top-k candidate paragraphs to generate list 
context information. �e sorting result is the result of the 
borrowed coarse ranker without repeated calculations. �is 
path can be described by equation (5). Finally, the selected 
passages and representations in the cache are sent to the �ne 
ranker.

Where (f)) is the matrix for top-k passages.(c) is the 
representation for i-th passage, which can be calculated by 
equation (6).

Fine ranker
�e inputs to the �ne ranker are vectors of top-k QA pairs ((f)) 
and top-k passages (f)). �e architecture of the �ne ranker is 
depicted in Figure 2. It incorporates a list-context attention 
mechanism that combines both static and adaptive attention. 

A�er getting the top-k sentences, this model will carry out the 
�ne selection process as described in the Fine Ranker 
subsection. �is model is trained using the log loss of two-level 
selection as shown below.

where yj is the label of the j-th passage. (c)  and (f) are the 
predicted score of j-th passage in the coarse and �ne rankers 
respectively. �en, these two layers are jointly trained to �nd a 
balance between passage selection and joint parameter 
optimization, as shown below.

where λ (We set λ=1.0) is a hyper-parameter to weigh the 
in�uence of the �ne ranker.

 �e asymptotic complexity is described as follows. Assuming 
that all hidden dimensions are ρ, the complexity of matrix (ρ×
ρ)-vector (ρ×1) multiplication is O(ρ2). BERT takes O(Cber). 
For the coarse ranker, calculating the BERT representation of n 
QA pairs and passages takes O(nCber). To maintain the cache, 
we need a top-k sort operation which takes O(nk) at the worst 

case. For the �ne ranker, the list context information requires 
O(ρ2). �e adaptive context information requires O(kρ2). 
�erefore, the total complexity is O(〖nC〗_bert). For BERT, it 
mainly includes matrix-vector multiplication, so the optimized 
calculation requires O(mlρ2). where m is the number of 
matrix-vector multiplications, and l is the sequence length. �e 
computational complexity of this model is still close to that of 
BERT.

Experiments
Datasets
WIKIQIA

�is is a standard open-domain QA dataset. �e questions are 
sampled from the Bing query logs, and the candidate sentences 
are extracted from paragraphs of the associated Wiki pages. 
�is dataset includes 3,047 questions and 29,258 sentences [8], 
where 1,473 candidate passages are labeled as answer sentences. 
Each passage contains only one sentence. We use the standard 
data splits in experiments. Figure 3 visualizes the data 
distribution of this dataset. �e x- and y- axes denote the 
number of candidate sentences and the number of questions 
respectively. �e candidate number of each question ranges 
from 1 to 30 and the average candidate number is 9.6. �e 
average length of question and answer are 6.5 and 25.1 words 
respectively.

Training algorithm
Prior multi-stage retrieval methods typically cascade di�erent 
machine learning techniques. Di�erent from the cascaded 
ranking architecture, we introduce the CPL algorithm to train a 
two-level network for the two-stage retrieval problem. �is 
algorithm performs ranking operations during the training 
process and can optimize the two-stage retrieval processes 
jointly.

 As shown in Algorithm 1, in line 1, this model �rst initializes 
the cache memory. �en, during model training, this model 
adds the ground truth answer to the memory, in line 2. In lines 
3-12, this model maintains the cache memory by coarsely 

selecting the top-k candidates. In lines 4-5, this model calculates 
the matching score based on the BERT representation. If the 
current candidate is a positive answer, its index j, matching 
score (c))  and representation pBert will be added to the cache, 
in line 7. If the current candidate does not match this question, 
this model will maintain the top-k candidates based on their 
scores. In line 13, this model merges the cache memory. In line 
14, this model incorporates the context information of other 
sentences in the �ne ranker to augment the passage 
representation. Finally, this model calculates the loss values of 
coarse and �ne rankers. �en, we can update the model 
parameters by backpropagation using an optimization 
algorithm.

MS MARCO 2.02 

�is is a large-scale machine reading comprehension dataset 
sampled from Bing’s search query logs [9]. We choose the 
dataset for the passage re-ranking task. Given a set of 1000 
passages that have been retrieved using the BM25 algorithm, 
re-rank these passages on their relevance to the query. �is 
dataset was the primary focus of the 2020 and 2019 TREC Deep 
Learning Track. It has also been utilized as a teaching resource 
for the ACM SIGIR/SIGKDD AFIRM Summer School, which 
o�ers courses on Machine Learning for Data Mining and 
Search. Figure 4 visualizes the data distribution of this dataset. 

�e x- and y- axes denote the number of candidate passages and 
the number of questions respectively. �e training set contains 
398,792 questions. �e number of passages in each question 
ranges from 2 to 732. �e question length ranges from 1 to 38 
words. �e passage length ranges from 1 to 362 words. Each 
question average has 100.7 passage candidates. On average, each 
question has one relevant passage. �e development set and test 
set contain 6,980 and 6,837 questions respectively. Each 
question has 1000 passages candidates retrieved with BM25 
from the MS MARCO corpus. In the test set, the question 
length ranges from 2 to 30 words. �e passage length ranges 
from 1 to 287 words.

Hyper-parameters
�is paper employs the BERT-base-uncased model to generate 
representations for sentence pairs. We utilize the output of the 
“[CLS]” token from the �nal layer of BERT as a representation 
of the QA pair. �e projection layer employs a single-layer 
neural network with the hyperbolic tangent activation function 
to generate 200-dimensional vector representations. We use 40 
tokens as the maximum length for questions and 200 tokens for 
answers. �e cache size is set to 15.

 �e AdamW optimization algorithm is used to update the 
model parameters [33]. We �ne-tune the BERT-base-uncased 

model on the passage reranking datasets. �e models run on an 
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (Mem: 330G) 
& 8 Tesla V100s and an Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz (Mem: 256) & 8 RTX 2080Tis.

Evaluation
�is paper uses mean average precision (MAP) and mean 
reciprocal rank (MRR) to evaluate the performance of the 
model. For the MS MARCO 2.0 dataset, we use the o�cial 
script to evaluate our results. �is script calculates the MRR@10 
which considers only the top 10 passages.

Results on the WIKIQA dataset
Table 2 presents the experimental result. Most baseline deep 
learning models typically design e�ective feature extraction 
schemes to better derive features from QA pairs for calculating 
question-answer similarity. �e BERT model has a similar goal 
of mapping a QA pair to a valid representation. �e proposed 
models are the following: 

Method MAP MRR 

WordCnt [8] 0.4891 0.4924 

WgtWordCnt [8] 0.5099 0.5132 

CNN-CNt [8] 0.517 0.5236 

CNNR [2] 0.6951 0.7107 

ABCNN-3 [11] 0.6921 0.7108 

KV-MemNN [12] 0.7069 0.7265 

BiMPM [13] 0.718 0.731 

IARNN-Occam [34] 0.7341 0.7418 

CNN-MULT [35] 0.7433 0.7545 

CNN-CTK [36] 0.7417 0.7588 

wGRU-sGRU-Gl2-Cnt [5] 0.7638 0.7852 
 

  
BERT base 0.7831 0.7923 

BERT base + MaxPooling 0.8119 0.8215 

C2FRetriever 0.8448 0.8605 

Table 2. Results on the WIKIQA dataset.

document and consider all the sentences. Note that this 
setting cannot tackle a situation that has unlimited 
candidates. �e max pooling extracts the document 
information. Because the passage number is less than 30, so 
we can get the max pooling. 

iii. C2Retriever is the proposed model with list and adaptive 
context information.

 We observe that our model outperforms the BERT base and 
improves 1.93% MAP and 0.71% MRR respectively to 
wGRU-sGRU-Gl2-Cnt [5]. Considering the context information 
by max pooling improves 2.88% MAP and 2.92% MRR 
respectively. �is means that considering the document-level 
context information is helpful for each passage. We observe that 
our C2FRetriever improves 6.17% MAP and 6.82% MRR on the 
BERT base model. �is is because our network considers 
context information from other answers. �e sentences of 
WIKIQA come from consecutive sentences in the wiki page 
paragraphs, so other sentences can also provide rich contextual 
information. Our network so�ly incorporates the document 
context information into the sentence representation. 

Results on the MS MARCO 2.0 dataset 
Table 3 lists the results on the MS MARCO 2.0 dataset. 
Compared with the WIKIQA dataset, each passage may contain 
two or more sentences so the passage length varies over a wide 
range. �e passages of any question are from di�erent 
documents retrieved by a search engine, so the continuity of 
passages is also reduced. �is experiment can better test the 
versatility of our method. Nogueira and Cho �ne-tune the 
BERT base and large models and simply use the matching score 
of QA pairs for ranking [37]. Note that they train their models 
on multiple TPUs with appropriate batch size and sequence 
length, which can help to better adapt the representation to the 
target domain. �is device signi�cantly improves model results.

 Our approach potentially enables the usage of BERT based 
ranking model with lower equipment requirements. However, 

Method MRR@10 Eval 

BM25 0.167 

LeToR 0.195 

O�cial Baseline [18] 0.2517 

Conv-KNRM [17] 0.271 

IRNet 0.281 

BERT base [37] 0.3472* 

BERT large [37] 0.359 

SAN + BERT base [20] 0.359 

Enriched BERT base + AOA index 0.368 

Enriched BERT base + AOA index + CAS + Full 0.3933** 

C2FRetriever (200 tokens) 0.347 

C2FRetriever (400 tokens) 0.364 
*�is score is generated on the development set.  
**�is score is generated with full ranking, while other models are reranking model. 

 

Table 3. Results on the MARCO dataset.

the drawback is that we compare the model performance by 
truncating the passage length. We further train our model by 
considering longer sequences (400 tokens) with multiple GPUs. 

Our model achieves further improvement by 1.7%. We achieve 
0.377 on the development set, which improves 3% from the 
TPU BERT base. �e full ranking method achieves the highest 

i. BERT base is the simple BERT model �ne-tuned on the 
WIKIQA dataset. �e inputs to the model are all QA pairs. 

ii. BERT base + MaxPooling denotes the BERT model add the 
max pooling. We organize the QA pairs according to the 

score, but the drawback is that the training process is a 
multi-stage pipeline. In contrast, our model only uses joint 
training and gets the �nal answer in one pass. �is method 
signi�cantly reduces the problem’s complexity.

 Compared with prior works, our approach incorporates the 
context information of other candidates to enhance the passage 
representation. Each query may have hundreds of retrieved 
passages from a large corpus. Our network e�ectively integrates 
the coarse- and �ne-selection processes by simultaneously 
performing model optimization and passage selection in one 
pass.

Ablation study
Table 4 shows the ablation study of the e�ects of di�erent model 
settings. A �rst observation is that the list context and adaptive 
context information are essential for a good result. Removing 
the List context information slightly degrades performance. 
�is indicates that the document-level context is necessary. 
When we train the pipeline model, the result drops (2.7%). �is 
means that joint training is important for the interaction of 
two-level ranking.  To evaluate the in�uence of cache size, we did extensive 

experiments based on di�erent cache sizes, as shown in Figure 
6. We observe that this model achieves higher performance with 
the cache size=16. As the cache size increases, the performance 
improves as it will allow the model to consider more contextual 
information. When we consider many passages, it can hurt 
performance because it introduces noise, so considering all 
candidates is not always a good option. �e choice of cache size 
is important to the result.

 When we replace context information with MaxPooling, the 
result also drops, but it is better than not considering the 
context. �is means considering document-level context 
information is helpful and using MaxPooling is a 
straightforward choice. When we replace MaxPooling with an 
LSTM encoder, the result slightly drops. �is is because the 
passages may not continuous context model and we have the 
long-term dependency problem because we consider all 
pair-wise interactions. When we remove the �ne ranker, the 
result drops. �is suggests that the two-level selection scheme is 
necessary.

 We further analyze the impact of query/passage length and 
number of passages, as shown in Figure 5. We limit the 
maximum length of queries to n tokens. We �nd that, for the 
same length of passage, longer query lengths generally lead to 
better results. However, for shorter query lengths, speci�cally 
when n < 20, longer passage lengths do not always result in 
improved outcomes. Since the meaning of the query is not well 
encoded, longer passages may contain more misleading 
information. �erefore, it is important to interpret and expand 
queries to improve results. We can conclude that an appropriate 
combination of query and paragraph lengths and model 
selection is crucial for the method.

Conclusions and Future Work
In this paper, we present a novel approach to passage reranking 
that incorporates list-context information to enhance the 
representation of passages across di�erent contexts. Unlike 
previous studies, we recognize the signi�cance of list-context 
information from other candidate passages in addressing the 
challenge of incomplete passage semantics and develop a 
method to integrate it e�ectively. Our model addresses the 
limitation of out-of-memory issues by leveraging a cache policy 
learning approach to represent list context. Additionally, we 
address the challenge of two-stage joint retrieval by integrating 
coarse and �ne rankers in a seamless manner. Our model is 

trained by optimizing all components simultaneously, leading 
to the generation of the �nal answer in a single pass, which 
signi�cantly reduces the complexity of the problem.

 �is paper primarily focuses on addressing the challenge of 
incorporating list-context information from other candidates. 
�e model has the potential to be extended to other cascaded 
tasks, such as information extraction and downstream 
applications, in the future [38].
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Passage reranking is a subtask of question answering and 
machine reading comprehension that involves retrieving one or 
several passages (text options) that can best answer a given 
question [1]. Each passage contains one or several sentences, as 

shown in Table 1. �e most common approach is to model the 
question-answer (QA) pair [2], and then compute various 
similarity measures between obtained representations. 
Finally, we can choose the high-score candidates as the 
answer. 

each passage by considering the context information from other 
candidates can lead to more con�dent results. We use 
“list-context” across di�erent passages to di�erentiate the 
“context” that is o�en discussed in the same QA pair. 
Context-independent representations may limit passage 
semantics when other passages provide useful context 
information for the question. For example, passage A in Table 1 
explains that “cardiovascular disease” refers to heart disease. 
Although passage C does not mention heart disease, we can still 
derive relevant information from passage A.

 Modeling list-context is a nontrivial task. �e �rst challenge 
is to emphasize the comparative and reference information. 
Previous studies have tackled this challenge by utilizing 
hierarchical gated recurrent unit recurrent neural networks 
(GRU RNNs) to consider context information among sentences 
[5]. However, they did not explicitly enhance sentence 
representation by leveraging other candidates. Another 
approach is multi-mention learning, which models multiple 
mentions in a document to answer questions [6]. While these 
methods have made signi�cant contributions, they do not 
explicitly model the context information in the passage list. To 
address this limitation, we propose a list-context attention 
mechanism composed of static attention and adaptive attention. 
�is mechanism injects list context information into the 
passage, allowing each candidate to consider the whole list 
semantics by attending to all the candidates. Additionally, 
adaptive attention enables each passage to adaptively interact 
with other candidates by considering their correlation 
information.

 �e second challenge is the large number of candidate 
passages. It’s di�cult to analyze thousands of passages 
simultaneously without running into technical issues. Previous 
research typically broke down a long list of passages into smaller 
parts and then created a context-independent representation of 
each sentence pair. �is approach o�en relies on a multi-stage 
retrieval architecture [7], where the candidate documents are 
repeatedly narrowed down and reordered. Our paper addresses 
this issue by applying a two-stage retrieval approach to the 
neural model. Unlike previous methods, our model streamlines 
the multi-stage process into a two-level (coarse-to-�ne) model. 
First, it selects a good passage set roughly, and then it �netunes 
the selection by ignoring irrelevant instances that are far from 
the classi�cation hyperplane. By training two layers of model 
parameters jointly, our approach enables them to collaborate 
and interact more e�ectively.

 We introduce a cache policy learning (CPL) algorithm to 
model the two-level selection process end-to-end. �e coarse 
selection sub-process uses a scoring function to rank the 
sentences in the cache memory and dynamically selects the 
top-k scoring sentences for further processing. In addition to 
the coarse selection sub-process, our model also incorporates a 
�ne ranker to further re�ne the representations. Our model 
performs passage reranking and parameter optimization 
simultaneously. We conduct experiments on the WIKIQA and 
MS MARCO 2.0 datasets [8,9]. �e results show the 
e�ectiveness of our approach. �e distinctive properties of this 
paper are as follows:

i. �is paper introduces the idea of enhancing passage 
representation by considering context information from 
other candidates. 

ii. �is paper proposes a list-context attention mechanism, 
composed of static attention and adaptive attention, to 
model list-context information. 

iii. �is paper introduces a C2FRetriever with a cache policy 
learning algorithm, which can select answers from a coarse 
to �ne level in a single pass. �e experimental results 
demonstrate the good performance of the proposed 
method.

Related Work
Previous work employs deep learning models to enhance 
sentence representations and compute their similarity. 
Rocktäschel et al. propose a textual entailment model that 
models word relations between sentences by using 
word-to-word attention on an LSTM-RNN [10]. Severyn and 
Moschitti propose CNNR to consider overlapping words to 
encode relational information between question and answer 
[2]. Yin et al. propose 3 attention methods on a CNN model 
(ABCNN) to encode mutual interactions between sentences 
[11]. Miller et al. propose key-value memory networks 
(KV-MemeNN) to select answers by using key-value structured 
facts in the model memory [12]. Wang et al. propose a bilateral 
multi-view matching (BiMPM) model [13], which utilizes an 
attention mechanism to model the mutual interaction of 
sentences at di�erent scales. Bachrach et al. apply two attention 
operations to capture more word-level contextual information, 
but their work still focuses on enhancing sentence-pair 
representations without considering list-level contextual 
information [14]. A work close to ours is the hierarchical 
GRU-RNN [5], which is used to model word-level and 
sentence-level matching and provide a kind of contextual 
information. However, their approach does not explicitly 
enhance sentence representations by using contextual 
information from other candidates. Our approach incorporates 
list-context information to augment sentence representation. 
Ran et al. propose an option comparison network (OCN) for 
multiple choice reading comprehension (MCRC) [15].

 Guo et al. propose the deep dependent matching model 
(DRMM), which introduces a histogram pooling technique to 
summarize the translation matrix [16]. Xiong et al. propose 
KNRM, which uses a kernel pooling layer to so�ly compute the 
frequency of word pairs at di�erent similarity levels [17]. 
MARCO’s o�cial baseline uses two separate DNNs to model 
query-document relevance using local and distributed 
representations, respectively [18]. Conv-KNRM enhances 
KNRM by utilizing CNN to compose n-gram embeddings from 
word embeddings and cross-matched n-grams of di�erent 
lengths [19]. SAN + BERT base maintains a state and iteratively 
re�nes its predictions [20].

 Previous work mainly uses a multi-stage retrieval 
architecture in web search systems [7]. A set of candidate 
documents is generated using a series of increasingly expensive 
machine-learning techniques. present a method for optimizing 
cascaded ranking models [21]. BERT is a pre-trained language 
model based on the bidirectional Transformer architecture 
[22-26]. It has been demonstrated to be highly e�ective in 
generating rich representations for pairs of sentences. BERT 
o�ers a means to directly model the interactions between 
passages. Sentence-BERT (SBERT) is an improved model based 
on BERT and RoBERTa that is used to e�ciently calculate the 
similarity between sentences [27]. It is trained through siamese 

 Recent studies have improved the quality of general text 
embeddings for representing passages. BAAI general 
embedding (BGE) utilizes the RetroMAE approach for 
pre-training and employs contrastive learning for �ne-tuning 
[3]. Moreover, online services such as OpenAI’s text embedding 
and Cohere-V3 generate text embeddings through their API 
[4]. While previous work has o�en focused on enriching text 
embeddings or enhancing the interaction between 
question-answer pairs, they have rarely considered the in�uence 

of other candidates. As a result, the relationships between 
candidates have not been fully explored. When humans select 
an answer, they consider not only whether each individual 
passage aligns with the question but also the presence of 
superior alternatives. Especially when the passages are derived 
from the same document or related documents, their 
semantics are o�en incomplete, and other candidates may 
contain valuable information that can supplement and 
interpret the current passage. Enriching the representation of 

and triplet network architecture, making the representation of 
sentences in vector space more suitable for cosine-similarity 
calculations. KEPLER proposes a method to jointly optimize 
knowledge embedding (KE) and pre-trained language model 
(PLM) [28]. �is means that the model simultaneously learns 
how to extract relational facts from the knowledge graph and 
how to understand language patterns from text during training.

 General text embedding techniques are commonly 
employed for web search and question answering, and they are 
also used to enhance the capabilities of large language models 
[1,29,30]. BGE adopts the RetroMAE method for pre-training 
and leverages contrastive learning for �ne-tuning [3]. OpenAI 
text embedding produces high-quality text and code vector 
representations through contrastive pre-training on large 
amounts of unsupervised data [4]. Cohere-v31  improves the 
quality of text embeddings by evaluating how well the query 
matches the document’s topic and assessing the overall quality 
of the content. However, when the document is segmented, it is 
easy to cause semantic incompleteness. �e above 
state-of-the-art method only enhances the text embeddings of a 
single passage and cannot obtain supplementary semantic 
information from other passages belonging to the same 
document. Our method provides complementary information 
between passages by modeling the relationship between 
passages in the same document. Our C2FRetriever is trained in 
an end-to-end manner so that the parameters of the coarse 
ranker and �ne ranker can be jointly optimized for better 
collaboration between the two levels.
1https://huggingface.co/Cohere  

Approach
Suppose we have a question Q with l tokens {                           }, 
and a candidate answer set O with n passages {                       }. n 
is the number of passages that can vary over a wide range 
(1~1000). Each passage    contains one or several sentences 
(passage) which consists of      tokens {                          }. �e label 
yi ∈ {0, 1} with 1 denotes a positive answer and 0 otherwise. �e 
goal of the model is to score each passage based on how well it 
answers the question and then rank the passages based on the 
score.

 Our main e�ort lies in designing a deep learning architecture 
that enhances representations by considering the contextual 
information of other candidates. Its main building block has 
two layers, the coarse ranker and the �ne ranker. In the 
following, we �rst describe the two layers and then describe the 
training algorithm.

Coarse ranker
�e architecture of the coarse ranker is shown in the lower part 
of Figure 1. �is layer aims to �lter some answers that are 
irrelevant to the given question to generate an intermediate set 
for performing �ne selection. We use a BERT model to generate 
representations of QA pairs and a single-layer neural network to 
compute matching scores [22]. 

Passage Oi is concatenated with question Q to form a complete 
sequence, denoted as ⟨[CLS]; Q; [SEP]; Oi; [SEP]⟩.

    
where              is the QA representation. Fbert denotes the 
network de�ned in Devlin et al. [22]. �e representations are 

then projected to matching scores using a single layer neural 
network.

Where W^c∈ R^(d and b^c is a scalar. σ is the sigmoid 
activation function. �is layer takes all QA pairs as input          
[(Q, O1), (Q, O2), ..., (Q, O   ], and then the model assigns a 
score to each candidate.

 Modeling all candidates directly will result in 
out-of-memory issues due to the large amount of list-context 
information that needs to be processed simultaneously. �e 
model parameter size is very large, and the gradient state 
retained during the optimization process will double the 
memory usage. To solve this problem, we propose using 
di�erent paths and caching mechanisms. Each path represents a 
di�erent function that processes the data in a way that reduces 
memory usage. �e coarse ranker creates a cache used to store 
the top-k passages it has encountered previously. According to 
p_, passages are dynamically ranked through path S1, which 
contains the function listed below.

where h0 is the initial state of the empty cache. ht is the cache 
state a�er t step update and contains the selected passages. K 
denotes the ranking function.

 Prior early-stage models typically process all the candidates 

Static attention
To capture and compose the context semantics from the answer 
list, our model uses an attention mechanism which achieves the 
best performance in di�erent alternatives to obtain the 
list-context representation [31,32]. �is method extracts 
informative passages and aggregates their representations to 
form the list-context representation V. �is method �rst 
measures the weight of each passage in the list context. 

where Cl ∈Rd is the context vector that can be jointly trained. 
�en, this model computes the normalized weight of each 
passage through a so�max function and aggregates these 
representations.

where max(u) gets the max value of [u_0, u_1, ..., u] where k is 
the candidate number. �is operation encodes the list context 
into a vector which summarizes the main semantics of this list. 
�is allows the model to so�ly consider all candidates in the 
entire list.

Where V  is the list-context representation.

Adaptive attention
While the static attention supplements the list-context 
information for each passage, V  is the same for all candidates 
and does not consider the question. Ideally, we would like to 
overcome the above two problems, by considering list-context 
information and adaptively incorporating the context 
information for each passage based on the question. Our model 
resolves this problem by using adaptive attention which injects 
the correlation information of passages into passage 
representation directly, as shown in Figure 2. �is method �rst 
computes the correlation weight between these passages by 
considering the semantic similarity of the QA pair and the 
list-context information. 

       
�en, this method obtains normalized correlation weights 
through a so�max function.
 

�e adaptive context representation is obtained by calculating 
the weighted sum of the passage representations.

where Z is the adaptive context of i-th passage. By using this 
attention scheme, each passage has a set of adaptive correlation 
weights with other candidates. �is correlation information can 
aggregate the passage representations �exibly. �is interaction 
operation encodes the correlation between candidates while 
also considering the list-context information and question.
�en, the ranking score of the options in the cache can be 
calculated as below.

Where f))�R^(1×τ) and (f))are linear composition matrix and 
bias. τ is vector dimension. [;] denotes the concatenation 
operation. (f)) is the score vector.

and then retain the top-k candidates which are also written to 
disk. Di�erent from them, we incrementally maintain the cache 
memory which only retains the top-k scoring QA pairs. k is a 
hyperparameter. �en, residual path S2 is used to connect the 
QA representation to the �ne ranker, and it contains the 
function of the equation (4).

Where (c) ) represents the    is the matrix 
for top-k QA pairs. (f) denotes the �ne ranker. C is the selection 
function.

 �e residual path S3 indicates that it is used to transfer the 
top-k paragraphs selected in the coarse ranker to the �ne ranker 
layer and generate a vector representation of the passage. Unlike 
the vector representation in the coarse ranker, it only contains 
the content of the passage, not the question. �ese passages are 
derived from the top-k candidate paragraphs to generate list 
context information. �e sorting result is the result of the 
borrowed coarse ranker without repeated calculations. �is 
path can be described by equation (5). Finally, the selected 
passages and representations in the cache are sent to the �ne 
ranker.

Where (f)) is the matrix for top-k passages.(c) is the 
representation for i-th passage, which can be calculated by 
equation (6).

Fine ranker
�e inputs to the �ne ranker are vectors of top-k QA pairs ((f)) 
and top-k passages (f)). �e architecture of the �ne ranker is 
depicted in Figure 2. It incorporates a list-context attention 
mechanism that combines both static and adaptive attention. 

A�er getting the top-k sentences, this model will carry out the 
�ne selection process as described in the Fine Ranker 
subsection. �is model is trained using the log loss of two-level 
selection as shown below.

where yj is the label of the j-th passage. (c)  and (f) are the 
predicted score of j-th passage in the coarse and �ne rankers 
respectively. �en, these two layers are jointly trained to �nd a 
balance between passage selection and joint parameter 
optimization, as shown below.

where λ (We set λ=1.0) is a hyper-parameter to weigh the 
in�uence of the �ne ranker.

 �e asymptotic complexity is described as follows. Assuming 
that all hidden dimensions are ρ, the complexity of matrix (ρ×
ρ)-vector (ρ×1) multiplication is O(ρ2). BERT takes O(Cber). 
For the coarse ranker, calculating the BERT representation of n 
QA pairs and passages takes O(nCber). To maintain the cache, 
we need a top-k sort operation which takes O(nk) at the worst 

case. For the �ne ranker, the list context information requires 
O(ρ2). �e adaptive context information requires O(kρ2). 
�erefore, the total complexity is O(〖nC〗_bert). For BERT, it 
mainly includes matrix-vector multiplication, so the optimized 
calculation requires O(mlρ2). where m is the number of 
matrix-vector multiplications, and l is the sequence length. �e 
computational complexity of this model is still close to that of 
BERT.

Experiments
Datasets
WIKIQIA

�is is a standard open-domain QA dataset. �e questions are 
sampled from the Bing query logs, and the candidate sentences 
are extracted from paragraphs of the associated Wiki pages. 
�is dataset includes 3,047 questions and 29,258 sentences [8], 
where 1,473 candidate passages are labeled as answer sentences. 
Each passage contains only one sentence. We use the standard 
data splits in experiments. Figure 3 visualizes the data 
distribution of this dataset. �e x- and y- axes denote the 
number of candidate sentences and the number of questions 
respectively. �e candidate number of each question ranges 
from 1 to 30 and the average candidate number is 9.6. �e 
average length of question and answer are 6.5 and 25.1 words 
respectively.

Training algorithm
Prior multi-stage retrieval methods typically cascade di�erent 
machine learning techniques. Di�erent from the cascaded 
ranking architecture, we introduce the CPL algorithm to train a 
two-level network for the two-stage retrieval problem. �is 
algorithm performs ranking operations during the training 
process and can optimize the two-stage retrieval processes 
jointly.

 As shown in Algorithm 1, in line 1, this model �rst initializes 
the cache memory. �en, during model training, this model 
adds the ground truth answer to the memory, in line 2. In lines 
3-12, this model maintains the cache memory by coarsely 

selecting the top-k candidates. In lines 4-5, this model calculates 
the matching score based on the BERT representation. If the 
current candidate is a positive answer, its index j, matching 
score (c))  and representation pBert will be added to the cache, 
in line 7. If the current candidate does not match this question, 
this model will maintain the top-k candidates based on their 
scores. In line 13, this model merges the cache memory. In line 
14, this model incorporates the context information of other 
sentences in the �ne ranker to augment the passage 
representation. Finally, this model calculates the loss values of 
coarse and �ne rankers. �en, we can update the model 
parameters by backpropagation using an optimization 
algorithm.

MS MARCO 2.02 

�is is a large-scale machine reading comprehension dataset 
sampled from Bing’s search query logs [9]. We choose the 
dataset for the passage re-ranking task. Given a set of 1000 
passages that have been retrieved using the BM25 algorithm, 
re-rank these passages on their relevance to the query. �is 
dataset was the primary focus of the 2020 and 2019 TREC Deep 
Learning Track. It has also been utilized as a teaching resource 
for the ACM SIGIR/SIGKDD AFIRM Summer School, which 
o�ers courses on Machine Learning for Data Mining and 
Search. Figure 4 visualizes the data distribution of this dataset. 

�e x- and y- axes denote the number of candidate passages and 
the number of questions respectively. �e training set contains 
398,792 questions. �e number of passages in each question 
ranges from 2 to 732. �e question length ranges from 1 to 38 
words. �e passage length ranges from 1 to 362 words. Each 
question average has 100.7 passage candidates. On average, each 
question has one relevant passage. �e development set and test 
set contain 6,980 and 6,837 questions respectively. Each 
question has 1000 passages candidates retrieved with BM25 
from the MS MARCO corpus. In the test set, the question 
length ranges from 2 to 30 words. �e passage length ranges 
from 1 to 287 words.

Hyper-parameters
�is paper employs the BERT-base-uncased model to generate 
representations for sentence pairs. We utilize the output of the 
“[CLS]” token from the �nal layer of BERT as a representation 
of the QA pair. �e projection layer employs a single-layer 
neural network with the hyperbolic tangent activation function 
to generate 200-dimensional vector representations. We use 40 
tokens as the maximum length for questions and 200 tokens for 
answers. �e cache size is set to 15.

 �e AdamW optimization algorithm is used to update the 
model parameters [33]. We �ne-tune the BERT-base-uncased 

model on the passage reranking datasets. �e models run on an 
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (Mem: 330G) 
& 8 Tesla V100s and an Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz (Mem: 256) & 8 RTX 2080Tis.

Evaluation
�is paper uses mean average precision (MAP) and mean 
reciprocal rank (MRR) to evaluate the performance of the 
model. For the MS MARCO 2.0 dataset, we use the o�cial 
script to evaluate our results. �is script calculates the MRR@10 
which considers only the top 10 passages.

Results on the WIKIQA dataset
Table 2 presents the experimental result. Most baseline deep 
learning models typically design e�ective feature extraction 
schemes to better derive features from QA pairs for calculating 
question-answer similarity. �e BERT model has a similar goal 
of mapping a QA pair to a valid representation. �e proposed 
models are the following: 

document and consider all the sentences. Note that this 
setting cannot tackle a situation that has unlimited 
candidates. �e max pooling extracts the document 
information. Because the passage number is less than 30, so 
we can get the max pooling. 

iii. C2Retriever is the proposed model with list and adaptive 
context information.

 We observe that our model outperforms the BERT base and 
improves 1.93% MAP and 0.71% MRR respectively to 
wGRU-sGRU-Gl2-Cnt [5]. Considering the context information 
by max pooling improves 2.88% MAP and 2.92% MRR 
respectively. �is means that considering the document-level 
context information is helpful for each passage. We observe that 
our C2FRetriever improves 6.17% MAP and 6.82% MRR on the 
BERT base model. �is is because our network considers 
context information from other answers. �e sentences of 
WIKIQA come from consecutive sentences in the wiki page 
paragraphs, so other sentences can also provide rich contextual 
information. Our network so�ly incorporates the document 
context information into the sentence representation. 

Results on the MS MARCO 2.0 dataset 
Table 3 lists the results on the MS MARCO 2.0 dataset. 
Compared with the WIKIQA dataset, each passage may contain 
two or more sentences so the passage length varies over a wide 
range. �e passages of any question are from di�erent 
documents retrieved by a search engine, so the continuity of 
passages is also reduced. �is experiment can better test the 
versatility of our method. Nogueira and Cho �ne-tune the 
BERT base and large models and simply use the matching score 
of QA pairs for ranking [37]. Note that they train their models 
on multiple TPUs with appropriate batch size and sequence 
length, which can help to better adapt the representation to the 
target domain. �is device signi�cantly improves model results.

 Our approach potentially enables the usage of BERT based 
ranking model with lower equipment requirements. However, 

the drawback is that we compare the model performance by 
truncating the passage length. We further train our model by 
considering longer sequences (400 tokens) with multiple GPUs. 

Our model achieves further improvement by 1.7%. We achieve 
0.377 on the development set, which improves 3% from the 
TPU BERT base. �e full ranking method achieves the highest 

i. BERT base is the simple BERT model �ne-tuned on the 
WIKIQA dataset. �e inputs to the model are all QA pairs. 

ii. BERT base + MaxPooling denotes the BERT model add the 
max pooling. We organize the QA pairs according to the 

score, but the drawback is that the training process is a 
multi-stage pipeline. In contrast, our model only uses joint 
training and gets the �nal answer in one pass. �is method 
signi�cantly reduces the problem’s complexity.

 Compared with prior works, our approach incorporates the 
context information of other candidates to enhance the passage 
representation. Each query may have hundreds of retrieved 
passages from a large corpus. Our network e�ectively integrates 
the coarse- and �ne-selection processes by simultaneously 
performing model optimization and passage selection in one 
pass.

Ablation study
Table 4 shows the ablation study of the e�ects of di�erent model 
settings. A �rst observation is that the list context and adaptive 
context information are essential for a good result. Removing 
the List context information slightly degrades performance. 
�is indicates that the document-level context is necessary. 
When we train the pipeline model, the result drops (2.7%). �is 
means that joint training is important for the interaction of 
two-level ranking.  To evaluate the in�uence of cache size, we did extensive 

experiments based on di�erent cache sizes, as shown in Figure 
6. We observe that this model achieves higher performance with 
the cache size=16. As the cache size increases, the performance 
improves as it will allow the model to consider more contextual 
information. When we consider many passages, it can hurt 
performance because it introduces noise, so considering all 
candidates is not always a good option. �e choice of cache size 
is important to the result.

Model MAP MRR 

C2FRetriever 0.8448  0.8605  

–List 0.8236  0.8348  

–Adaptive 0.8113  0.8215  

–Adaptive, List 0.8009  0.8121  

–Joint training 0.8178  0.8292  

–Adaptive, List, + MaxPooling 0.8119  0.8215  

–Adaptive, List, + LSTM 0.8085  0.82  

–Adaptive, List, Two-level 0.7831  0.7923  

Table 4. Model setting ablations on the WIKIQA dataset.

 When we replace context information with MaxPooling, the 
result also drops, but it is better than not considering the 
context. �is means considering document-level context 
information is helpful and using MaxPooling is a 
straightforward choice. When we replace MaxPooling with an 
LSTM encoder, the result slightly drops. �is is because the 
passages may not continuous context model and we have the 
long-term dependency problem because we consider all 
pair-wise interactions. When we remove the �ne ranker, the 
result drops. �is suggests that the two-level selection scheme is 
necessary.

 We further analyze the impact of query/passage length and 
number of passages, as shown in Figure 5. We limit the 
maximum length of queries to n tokens. We �nd that, for the 
same length of passage, longer query lengths generally lead to 
better results. However, for shorter query lengths, speci�cally 
when n < 20, longer passage lengths do not always result in 
improved outcomes. Since the meaning of the query is not well 
encoded, longer passages may contain more misleading 
information. �erefore, it is important to interpret and expand 
queries to improve results. We can conclude that an appropriate 
combination of query and paragraph lengths and model 
selection is crucial for the method.

Figure 5. The influence of query/passage length and passage number 
in fine ranker.

Figure 6. The influence of cache size.

Conclusions and Future Work
In this paper, we present a novel approach to passage reranking 
that incorporates list-context information to enhance the 
representation of passages across di�erent contexts. Unlike 
previous studies, we recognize the signi�cance of list-context 
information from other candidate passages in addressing the 
challenge of incomplete passage semantics and develop a 
method to integrate it e�ectively. Our model addresses the 
limitation of out-of-memory issues by leveraging a cache policy 
learning approach to represent list context. Additionally, we 
address the challenge of two-stage joint retrieval by integrating 
coarse and �ne rankers in a seamless manner. Our model is 

trained by optimizing all components simultaneously, leading 
to the generation of the �nal answer in a single pass, which 
signi�cantly reduces the complexity of the problem.

 �is paper primarily focuses on addressing the challenge of 
incorporating list-context information from other candidates. 
�e model has the potential to be extended to other cascaded 
tasks, such as information extraction and downstream 
applications, in the future [38].
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Passage reranking is a subtask of question answering and 
machine reading comprehension that involves retrieving one or 
several passages (text options) that can best answer a given 
question [1]. Each passage contains one or several sentences, as 

shown in Table 1. �e most common approach is to model the 
question-answer (QA) pair [2], and then compute various 
similarity measures between obtained representations. 
Finally, we can choose the high-score candidates as the 
answer. 

each passage by considering the context information from other 
candidates can lead to more con�dent results. We use 
“list-context” across di�erent passages to di�erentiate the 
“context” that is o�en discussed in the same QA pair. 
Context-independent representations may limit passage 
semantics when other passages provide useful context 
information for the question. For example, passage A in Table 1 
explains that “cardiovascular disease” refers to heart disease. 
Although passage C does not mention heart disease, we can still 
derive relevant information from passage A.

 Modeling list-context is a nontrivial task. �e �rst challenge 
is to emphasize the comparative and reference information. 
Previous studies have tackled this challenge by utilizing 
hierarchical gated recurrent unit recurrent neural networks 
(GRU RNNs) to consider context information among sentences 
[5]. However, they did not explicitly enhance sentence 
representation by leveraging other candidates. Another 
approach is multi-mention learning, which models multiple 
mentions in a document to answer questions [6]. While these 
methods have made signi�cant contributions, they do not 
explicitly model the context information in the passage list. To 
address this limitation, we propose a list-context attention 
mechanism composed of static attention and adaptive attention. 
�is mechanism injects list context information into the 
passage, allowing each candidate to consider the whole list 
semantics by attending to all the candidates. Additionally, 
adaptive attention enables each passage to adaptively interact 
with other candidates by considering their correlation 
information.

 �e second challenge is the large number of candidate 
passages. It’s di�cult to analyze thousands of passages 
simultaneously without running into technical issues. Previous 
research typically broke down a long list of passages into smaller 
parts and then created a context-independent representation of 
each sentence pair. �is approach o�en relies on a multi-stage 
retrieval architecture [7], where the candidate documents are 
repeatedly narrowed down and reordered. Our paper addresses 
this issue by applying a two-stage retrieval approach to the 
neural model. Unlike previous methods, our model streamlines 
the multi-stage process into a two-level (coarse-to-�ne) model. 
First, it selects a good passage set roughly, and then it �netunes 
the selection by ignoring irrelevant instances that are far from 
the classi�cation hyperplane. By training two layers of model 
parameters jointly, our approach enables them to collaborate 
and interact more e�ectively.

 We introduce a cache policy learning (CPL) algorithm to 
model the two-level selection process end-to-end. �e coarse 
selection sub-process uses a scoring function to rank the 
sentences in the cache memory and dynamically selects the 
top-k scoring sentences for further processing. In addition to 
the coarse selection sub-process, our model also incorporates a 
�ne ranker to further re�ne the representations. Our model 
performs passage reranking and parameter optimization 
simultaneously. We conduct experiments on the WIKIQA and 
MS MARCO 2.0 datasets [8,9]. �e results show the 
e�ectiveness of our approach. �e distinctive properties of this 
paper are as follows:

i. �is paper introduces the idea of enhancing passage 
representation by considering context information from 
other candidates. 

ii. �is paper proposes a list-context attention mechanism, 
composed of static attention and adaptive attention, to 
model list-context information. 

iii. �is paper introduces a C2FRetriever with a cache policy 
learning algorithm, which can select answers from a coarse 
to �ne level in a single pass. �e experimental results 
demonstrate the good performance of the proposed 
method.

Related Work
Previous work employs deep learning models to enhance 
sentence representations and compute their similarity. 
Rocktäschel et al. propose a textual entailment model that 
models word relations between sentences by using 
word-to-word attention on an LSTM-RNN [10]. Severyn and 
Moschitti propose CNNR to consider overlapping words to 
encode relational information between question and answer 
[2]. Yin et al. propose 3 attention methods on a CNN model 
(ABCNN) to encode mutual interactions between sentences 
[11]. Miller et al. propose key-value memory networks 
(KV-MemeNN) to select answers by using key-value structured 
facts in the model memory [12]. Wang et al. propose a bilateral 
multi-view matching (BiMPM) model [13], which utilizes an 
attention mechanism to model the mutual interaction of 
sentences at di�erent scales. Bachrach et al. apply two attention 
operations to capture more word-level contextual information, 
but their work still focuses on enhancing sentence-pair 
representations without considering list-level contextual 
information [14]. A work close to ours is the hierarchical 
GRU-RNN [5], which is used to model word-level and 
sentence-level matching and provide a kind of contextual 
information. However, their approach does not explicitly 
enhance sentence representations by using contextual 
information from other candidates. Our approach incorporates 
list-context information to augment sentence representation. 
Ran et al. propose an option comparison network (OCN) for 
multiple choice reading comprehension (MCRC) [15].

 Guo et al. propose the deep dependent matching model 
(DRMM), which introduces a histogram pooling technique to 
summarize the translation matrix [16]. Xiong et al. propose 
KNRM, which uses a kernel pooling layer to so�ly compute the 
frequency of word pairs at di�erent similarity levels [17]. 
MARCO’s o�cial baseline uses two separate DNNs to model 
query-document relevance using local and distributed 
representations, respectively [18]. Conv-KNRM enhances 
KNRM by utilizing CNN to compose n-gram embeddings from 
word embeddings and cross-matched n-grams of di�erent 
lengths [19]. SAN + BERT base maintains a state and iteratively 
re�nes its predictions [20].

 Previous work mainly uses a multi-stage retrieval 
architecture in web search systems [7]. A set of candidate 
documents is generated using a series of increasingly expensive 
machine-learning techniques. present a method for optimizing 
cascaded ranking models [21]. BERT is a pre-trained language 
model based on the bidirectional Transformer architecture 
[22-26]. It has been demonstrated to be highly e�ective in 
generating rich representations for pairs of sentences. BERT 
o�ers a means to directly model the interactions between 
passages. Sentence-BERT (SBERT) is an improved model based 
on BERT and RoBERTa that is used to e�ciently calculate the 
similarity between sentences [27]. It is trained through siamese 

 Recent studies have improved the quality of general text 
embeddings for representing passages. BAAI general 
embedding (BGE) utilizes the RetroMAE approach for 
pre-training and employs contrastive learning for �ne-tuning 
[3]. Moreover, online services such as OpenAI’s text embedding 
and Cohere-V3 generate text embeddings through their API 
[4]. While previous work has o�en focused on enriching text 
embeddings or enhancing the interaction between 
question-answer pairs, they have rarely considered the in�uence 

of other candidates. As a result, the relationships between 
candidates have not been fully explored. When humans select 
an answer, they consider not only whether each individual 
passage aligns with the question but also the presence of 
superior alternatives. Especially when the passages are derived 
from the same document or related documents, their 
semantics are o�en incomplete, and other candidates may 
contain valuable information that can supplement and 
interpret the current passage. Enriching the representation of 

and triplet network architecture, making the representation of 
sentences in vector space more suitable for cosine-similarity 
calculations. KEPLER proposes a method to jointly optimize 
knowledge embedding (KE) and pre-trained language model 
(PLM) [28]. �is means that the model simultaneously learns 
how to extract relational facts from the knowledge graph and 
how to understand language patterns from text during training.

 General text embedding techniques are commonly 
employed for web search and question answering, and they are 
also used to enhance the capabilities of large language models 
[1,29,30]. BGE adopts the RetroMAE method for pre-training 
and leverages contrastive learning for �ne-tuning [3]. OpenAI 
text embedding produces high-quality text and code vector 
representations through contrastive pre-training on large 
amounts of unsupervised data [4]. Cohere-v31  improves the 
quality of text embeddings by evaluating how well the query 
matches the document’s topic and assessing the overall quality 
of the content. However, when the document is segmented, it is 
easy to cause semantic incompleteness. �e above 
state-of-the-art method only enhances the text embeddings of a 
single passage and cannot obtain supplementary semantic 
information from other passages belonging to the same 
document. Our method provides complementary information 
between passages by modeling the relationship between 
passages in the same document. Our C2FRetriever is trained in 
an end-to-end manner so that the parameters of the coarse 
ranker and �ne ranker can be jointly optimized for better 
collaboration between the two levels.
1https://huggingface.co/Cohere  

Approach
Suppose we have a question Q with l tokens {                           }, 
and a candidate answer set O with n passages {                       }. n 
is the number of passages that can vary over a wide range 
(1~1000). Each passage    contains one or several sentences 
(passage) which consists of      tokens {                          }. �e label 
yi ∈ {0, 1} with 1 denotes a positive answer and 0 otherwise. �e 
goal of the model is to score each passage based on how well it 
answers the question and then rank the passages based on the 
score.

 Our main e�ort lies in designing a deep learning architecture 
that enhances representations by considering the contextual 
information of other candidates. Its main building block has 
two layers, the coarse ranker and the �ne ranker. In the 
following, we �rst describe the two layers and then describe the 
training algorithm.

Coarse ranker
�e architecture of the coarse ranker is shown in the lower part 
of Figure 1. �is layer aims to �lter some answers that are 
irrelevant to the given question to generate an intermediate set 
for performing �ne selection. We use a BERT model to generate 
representations of QA pairs and a single-layer neural network to 
compute matching scores [22]. 

Passage Oi is concatenated with question Q to form a complete 
sequence, denoted as ⟨[CLS]; Q; [SEP]; Oi; [SEP]⟩.

    
where              is the QA representation. Fbert denotes the 
network de�ned in Devlin et al. [22]. �e representations are 

then projected to matching scores using a single layer neural 
network.

Where W^c∈ R^(d and b^c is a scalar. σ is the sigmoid 
activation function. �is layer takes all QA pairs as input          
[(Q, O1), (Q, O2), ..., (Q, O   ], and then the model assigns a 
score to each candidate.

 Modeling all candidates directly will result in 
out-of-memory issues due to the large amount of list-context 
information that needs to be processed simultaneously. �e 
model parameter size is very large, and the gradient state 
retained during the optimization process will double the 
memory usage. To solve this problem, we propose using 
di�erent paths and caching mechanisms. Each path represents a 
di�erent function that processes the data in a way that reduces 
memory usage. �e coarse ranker creates a cache used to store 
the top-k passages it has encountered previously. According to 
p_, passages are dynamically ranked through path S1, which 
contains the function listed below.

where h0 is the initial state of the empty cache. ht is the cache 
state a�er t step update and contains the selected passages. K 
denotes the ranking function.

 Prior early-stage models typically process all the candidates 

Static attention
To capture and compose the context semantics from the answer 
list, our model uses an attention mechanism which achieves the 
best performance in di�erent alternatives to obtain the 
list-context representation [31,32]. �is method extracts 
informative passages and aggregates their representations to 
form the list-context representation V. �is method �rst 
measures the weight of each passage in the list context. 

where Cl ∈Rd is the context vector that can be jointly trained. 
�en, this model computes the normalized weight of each 
passage through a so�max function and aggregates these 
representations.

where max(u) gets the max value of [u_0, u_1, ..., u] where k is 
the candidate number. �is operation encodes the list context 
into a vector which summarizes the main semantics of this list. 
�is allows the model to so�ly consider all candidates in the 
entire list.

Where V  is the list-context representation.

Adaptive attention
While the static attention supplements the list-context 
information for each passage, V  is the same for all candidates 
and does not consider the question. Ideally, we would like to 
overcome the above two problems, by considering list-context 
information and adaptively incorporating the context 
information for each passage based on the question. Our model 
resolves this problem by using adaptive attention which injects 
the correlation information of passages into passage 
representation directly, as shown in Figure 2. �is method �rst 
computes the correlation weight between these passages by 
considering the semantic similarity of the QA pair and the 
list-context information. 

       
�en, this method obtains normalized correlation weights 
through a so�max function.
 

�e adaptive context representation is obtained by calculating 
the weighted sum of the passage representations.

where Z is the adaptive context of i-th passage. By using this 
attention scheme, each passage has a set of adaptive correlation 
weights with other candidates. �is correlation information can 
aggregate the passage representations �exibly. �is interaction 
operation encodes the correlation between candidates while 
also considering the list-context information and question.
�en, the ranking score of the options in the cache can be 
calculated as below.

Where f))�R^(1×τ) and (f))are linear composition matrix and 
bias. τ is vector dimension. [;] denotes the concatenation 
operation. (f)) is the score vector.

and then retain the top-k candidates which are also written to 
disk. Di�erent from them, we incrementally maintain the cache 
memory which only retains the top-k scoring QA pairs. k is a 
hyperparameter. �en, residual path S2 is used to connect the 
QA representation to the �ne ranker, and it contains the 
function of the equation (4).

Where (c) ) represents the    is the matrix 
for top-k QA pairs. (f) denotes the �ne ranker. C is the selection 
function.

 �e residual path S3 indicates that it is used to transfer the 
top-k paragraphs selected in the coarse ranker to the �ne ranker 
layer and generate a vector representation of the passage. Unlike 
the vector representation in the coarse ranker, it only contains 
the content of the passage, not the question. �ese passages are 
derived from the top-k candidate paragraphs to generate list 
context information. �e sorting result is the result of the 
borrowed coarse ranker without repeated calculations. �is 
path can be described by equation (5). Finally, the selected 
passages and representations in the cache are sent to the �ne 
ranker.

Where (f)) is the matrix for top-k passages.(c) is the 
representation for i-th passage, which can be calculated by 
equation (6).

Fine ranker
�e inputs to the �ne ranker are vectors of top-k QA pairs ((f)) 
and top-k passages (f)). �e architecture of the �ne ranker is 
depicted in Figure 2. It incorporates a list-context attention 
mechanism that combines both static and adaptive attention. 

A�er getting the top-k sentences, this model will carry out the 
�ne selection process as described in the Fine Ranker 
subsection. �is model is trained using the log loss of two-level 
selection as shown below.

where yj is the label of the j-th passage. (c)  and (f) are the 
predicted score of j-th passage in the coarse and �ne rankers 
respectively. �en, these two layers are jointly trained to �nd a 
balance between passage selection and joint parameter 
optimization, as shown below.

where λ (We set λ=1.0) is a hyper-parameter to weigh the 
in�uence of the �ne ranker.

 �e asymptotic complexity is described as follows. Assuming 
that all hidden dimensions are ρ, the complexity of matrix (ρ×
ρ)-vector (ρ×1) multiplication is O(ρ2). BERT takes O(Cber). 
For the coarse ranker, calculating the BERT representation of n 
QA pairs and passages takes O(nCber). To maintain the cache, 
we need a top-k sort operation which takes O(nk) at the worst 

case. For the �ne ranker, the list context information requires 
O(ρ2). �e adaptive context information requires O(kρ2). 
�erefore, the total complexity is O(〖nC〗_bert). For BERT, it 
mainly includes matrix-vector multiplication, so the optimized 
calculation requires O(mlρ2). where m is the number of 
matrix-vector multiplications, and l is the sequence length. �e 
computational complexity of this model is still close to that of 
BERT.

Experiments
Datasets
WIKIQIA

�is is a standard open-domain QA dataset. �e questions are 
sampled from the Bing query logs, and the candidate sentences 
are extracted from paragraphs of the associated Wiki pages. 
�is dataset includes 3,047 questions and 29,258 sentences [8], 
where 1,473 candidate passages are labeled as answer sentences. 
Each passage contains only one sentence. We use the standard 
data splits in experiments. Figure 3 visualizes the data 
distribution of this dataset. �e x- and y- axes denote the 
number of candidate sentences and the number of questions 
respectively. �e candidate number of each question ranges 
from 1 to 30 and the average candidate number is 9.6. �e 
average length of question and answer are 6.5 and 25.1 words 
respectively.

Training algorithm
Prior multi-stage retrieval methods typically cascade di�erent 
machine learning techniques. Di�erent from the cascaded 
ranking architecture, we introduce the CPL algorithm to train a 
two-level network for the two-stage retrieval problem. �is 
algorithm performs ranking operations during the training 
process and can optimize the two-stage retrieval processes 
jointly.

 As shown in Algorithm 1, in line 1, this model �rst initializes 
the cache memory. �en, during model training, this model 
adds the ground truth answer to the memory, in line 2. In lines 
3-12, this model maintains the cache memory by coarsely 

selecting the top-k candidates. In lines 4-5, this model calculates 
the matching score based on the BERT representation. If the 
current candidate is a positive answer, its index j, matching 
score (c))  and representation pBert will be added to the cache, 
in line 7. If the current candidate does not match this question, 
this model will maintain the top-k candidates based on their 
scores. In line 13, this model merges the cache memory. In line 
14, this model incorporates the context information of other 
sentences in the �ne ranker to augment the passage 
representation. Finally, this model calculates the loss values of 
coarse and �ne rankers. �en, we can update the model 
parameters by backpropagation using an optimization 
algorithm.

MS MARCO 2.02 

�is is a large-scale machine reading comprehension dataset 
sampled from Bing’s search query logs [9]. We choose the 
dataset for the passage re-ranking task. Given a set of 1000 
passages that have been retrieved using the BM25 algorithm, 
re-rank these passages on their relevance to the query. �is 
dataset was the primary focus of the 2020 and 2019 TREC Deep 
Learning Track. It has also been utilized as a teaching resource 
for the ACM SIGIR/SIGKDD AFIRM Summer School, which 
o�ers courses on Machine Learning for Data Mining and 
Search. Figure 4 visualizes the data distribution of this dataset. 

�e x- and y- axes denote the number of candidate passages and 
the number of questions respectively. �e training set contains 
398,792 questions. �e number of passages in each question 
ranges from 2 to 732. �e question length ranges from 1 to 38 
words. �e passage length ranges from 1 to 362 words. Each 
question average has 100.7 passage candidates. On average, each 
question has one relevant passage. �e development set and test 
set contain 6,980 and 6,837 questions respectively. Each 
question has 1000 passages candidates retrieved with BM25 
from the MS MARCO corpus. In the test set, the question 
length ranges from 2 to 30 words. �e passage length ranges 
from 1 to 287 words.

Hyper-parameters
�is paper employs the BERT-base-uncased model to generate 
representations for sentence pairs. We utilize the output of the 
“[CLS]” token from the �nal layer of BERT as a representation 
of the QA pair. �e projection layer employs a single-layer 
neural network with the hyperbolic tangent activation function 
to generate 200-dimensional vector representations. We use 40 
tokens as the maximum length for questions and 200 tokens for 
answers. �e cache size is set to 15.

 �e AdamW optimization algorithm is used to update the 
model parameters [33]. We �ne-tune the BERT-base-uncased 

model on the passage reranking datasets. �e models run on an 
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (Mem: 330G) 
& 8 Tesla V100s and an Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz (Mem: 256) & 8 RTX 2080Tis.

Evaluation
�is paper uses mean average precision (MAP) and mean 
reciprocal rank (MRR) to evaluate the performance of the 
model. For the MS MARCO 2.0 dataset, we use the o�cial 
script to evaluate our results. �is script calculates the MRR@10 
which considers only the top 10 passages.

Results on the WIKIQA dataset
Table 2 presents the experimental result. Most baseline deep 
learning models typically design e�ective feature extraction 
schemes to better derive features from QA pairs for calculating 
question-answer similarity. �e BERT model has a similar goal 
of mapping a QA pair to a valid representation. �e proposed 
models are the following: 

document and consider all the sentences. Note that this 
setting cannot tackle a situation that has unlimited 
candidates. �e max pooling extracts the document 
information. Because the passage number is less than 30, so 
we can get the max pooling. 

iii. C2Retriever is the proposed model with list and adaptive 
context information.

 We observe that our model outperforms the BERT base and 
improves 1.93% MAP and 0.71% MRR respectively to 
wGRU-sGRU-Gl2-Cnt [5]. Considering the context information 
by max pooling improves 2.88% MAP and 2.92% MRR 
respectively. �is means that considering the document-level 
context information is helpful for each passage. We observe that 
our C2FRetriever improves 6.17% MAP and 6.82% MRR on the 
BERT base model. �is is because our network considers 
context information from other answers. �e sentences of 
WIKIQA come from consecutive sentences in the wiki page 
paragraphs, so other sentences can also provide rich contextual 
information. Our network so�ly incorporates the document 
context information into the sentence representation. 

Results on the MS MARCO 2.0 dataset 
Table 3 lists the results on the MS MARCO 2.0 dataset. 
Compared with the WIKIQA dataset, each passage may contain 
two or more sentences so the passage length varies over a wide 
range. �e passages of any question are from di�erent 
documents retrieved by a search engine, so the continuity of 
passages is also reduced. �is experiment can better test the 
versatility of our method. Nogueira and Cho �ne-tune the 
BERT base and large models and simply use the matching score 
of QA pairs for ranking [37]. Note that they train their models 
on multiple TPUs with appropriate batch size and sequence 
length, which can help to better adapt the representation to the 
target domain. �is device signi�cantly improves model results.

 Our approach potentially enables the usage of BERT based 
ranking model with lower equipment requirements. However, 

the drawback is that we compare the model performance by 
truncating the passage length. We further train our model by 
considering longer sequences (400 tokens) with multiple GPUs. 

Our model achieves further improvement by 1.7%. We achieve 
0.377 on the development set, which improves 3% from the 
TPU BERT base. �e full ranking method achieves the highest 

i. BERT base is the simple BERT model �ne-tuned on the 
WIKIQA dataset. �e inputs to the model are all QA pairs. 

ii. BERT base + MaxPooling denotes the BERT model add the 
max pooling. We organize the QA pairs according to the 

score, but the drawback is that the training process is a 
multi-stage pipeline. In contrast, our model only uses joint 
training and gets the �nal answer in one pass. �is method 
signi�cantly reduces the problem’s complexity.

 Compared with prior works, our approach incorporates the 
context information of other candidates to enhance the passage 
representation. Each query may have hundreds of retrieved 
passages from a large corpus. Our network e�ectively integrates 
the coarse- and �ne-selection processes by simultaneously 
performing model optimization and passage selection in one 
pass.

Ablation study
Table 4 shows the ablation study of the e�ects of di�erent model 
settings. A �rst observation is that the list context and adaptive 
context information are essential for a good result. Removing 
the List context information slightly degrades performance. 
�is indicates that the document-level context is necessary. 
When we train the pipeline model, the result drops (2.7%). �is 
means that joint training is important for the interaction of 
two-level ranking.  To evaluate the in�uence of cache size, we did extensive 

experiments based on di�erent cache sizes, as shown in Figure 
6. We observe that this model achieves higher performance with 
the cache size=16. As the cache size increases, the performance 
improves as it will allow the model to consider more contextual 
information. When we consider many passages, it can hurt 
performance because it introduces noise, so considering all 
candidates is not always a good option. �e choice of cache size 
is important to the result.

 When we replace context information with MaxPooling, the 
result also drops, but it is better than not considering the 
context. �is means considering document-level context 
information is helpful and using MaxPooling is a 
straightforward choice. When we replace MaxPooling with an 
LSTM encoder, the result slightly drops. �is is because the 
passages may not continuous context model and we have the 
long-term dependency problem because we consider all 
pair-wise interactions. When we remove the �ne ranker, the 
result drops. �is suggests that the two-level selection scheme is 
necessary.

 We further analyze the impact of query/passage length and 
number of passages, as shown in Figure 5. We limit the 
maximum length of queries to n tokens. We �nd that, for the 
same length of passage, longer query lengths generally lead to 
better results. However, for shorter query lengths, speci�cally 
when n < 20, longer passage lengths do not always result in 
improved outcomes. Since the meaning of the query is not well 
encoded, longer passages may contain more misleading 
information. �erefore, it is important to interpret and expand 
queries to improve results. We can conclude that an appropriate 
combination of query and paragraph lengths and model 
selection is crucial for the method.

Conclusions and Future Work
In this paper, we present a novel approach to passage reranking 
that incorporates list-context information to enhance the 
representation of passages across di�erent contexts. Unlike 
previous studies, we recognize the signi�cance of list-context 
information from other candidate passages in addressing the 
challenge of incomplete passage semantics and develop a 
method to integrate it e�ectively. Our model addresses the 
limitation of out-of-memory issues by leveraging a cache policy 
learning approach to represent list context. Additionally, we 
address the challenge of two-stage joint retrieval by integrating 
coarse and �ne rankers in a seamless manner. Our model is 

trained by optimizing all components simultaneously, leading 
to the generation of the �nal answer in a single pass, which 
signi�cantly reduces the complexity of the problem.

 �is paper primarily focuses on addressing the challenge of 
incorporating list-context information from other candidates. 
�e model has the potential to be extended to other cascaded 
tasks, such as information extraction and downstream 
applications, in the future [38].
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Passage reranking is a subtask of question answering and 
machine reading comprehension that involves retrieving one or 
several passages (text options) that can best answer a given 
question [1]. Each passage contains one or several sentences, as 

shown in Table 1. �e most common approach is to model the 
question-answer (QA) pair [2], and then compute various 
similarity measures between obtained representations. 
Finally, we can choose the high-score candidates as the 
answer. 

each passage by considering the context information from other 
candidates can lead to more con�dent results. We use 
“list-context” across di�erent passages to di�erentiate the 
“context” that is o�en discussed in the same QA pair. 
Context-independent representations may limit passage 
semantics when other passages provide useful context 
information for the question. For example, passage A in Table 1 
explains that “cardiovascular disease” refers to heart disease. 
Although passage C does not mention heart disease, we can still 
derive relevant information from passage A.

 Modeling list-context is a nontrivial task. �e �rst challenge 
is to emphasize the comparative and reference information. 
Previous studies have tackled this challenge by utilizing 
hierarchical gated recurrent unit recurrent neural networks 
(GRU RNNs) to consider context information among sentences 
[5]. However, they did not explicitly enhance sentence 
representation by leveraging other candidates. Another 
approach is multi-mention learning, which models multiple 
mentions in a document to answer questions [6]. While these 
methods have made signi�cant contributions, they do not 
explicitly model the context information in the passage list. To 
address this limitation, we propose a list-context attention 
mechanism composed of static attention and adaptive attention. 
�is mechanism injects list context information into the 
passage, allowing each candidate to consider the whole list 
semantics by attending to all the candidates. Additionally, 
adaptive attention enables each passage to adaptively interact 
with other candidates by considering their correlation 
information.

 �e second challenge is the large number of candidate 
passages. It’s di�cult to analyze thousands of passages 
simultaneously without running into technical issues. Previous 
research typically broke down a long list of passages into smaller 
parts and then created a context-independent representation of 
each sentence pair. �is approach o�en relies on a multi-stage 
retrieval architecture [7], where the candidate documents are 
repeatedly narrowed down and reordered. Our paper addresses 
this issue by applying a two-stage retrieval approach to the 
neural model. Unlike previous methods, our model streamlines 
the multi-stage process into a two-level (coarse-to-�ne) model. 
First, it selects a good passage set roughly, and then it �netunes 
the selection by ignoring irrelevant instances that are far from 
the classi�cation hyperplane. By training two layers of model 
parameters jointly, our approach enables them to collaborate 
and interact more e�ectively.

 We introduce a cache policy learning (CPL) algorithm to 
model the two-level selection process end-to-end. �e coarse 
selection sub-process uses a scoring function to rank the 
sentences in the cache memory and dynamically selects the 
top-k scoring sentences for further processing. In addition to 
the coarse selection sub-process, our model also incorporates a 
�ne ranker to further re�ne the representations. Our model 
performs passage reranking and parameter optimization 
simultaneously. We conduct experiments on the WIKIQA and 
MS MARCO 2.0 datasets [8,9]. �e results show the 
e�ectiveness of our approach. �e distinctive properties of this 
paper are as follows:

i. �is paper introduces the idea of enhancing passage 
representation by considering context information from 
other candidates. 

ii. �is paper proposes a list-context attention mechanism, 
composed of static attention and adaptive attention, to 
model list-context information. 

iii. �is paper introduces a C2FRetriever with a cache policy 
learning algorithm, which can select answers from a coarse 
to �ne level in a single pass. �e experimental results 
demonstrate the good performance of the proposed 
method.

Related Work
Previous work employs deep learning models to enhance 
sentence representations and compute their similarity. 
Rocktäschel et al. propose a textual entailment model that 
models word relations between sentences by using 
word-to-word attention on an LSTM-RNN [10]. Severyn and 
Moschitti propose CNNR to consider overlapping words to 
encode relational information between question and answer 
[2]. Yin et al. propose 3 attention methods on a CNN model 
(ABCNN) to encode mutual interactions between sentences 
[11]. Miller et al. propose key-value memory networks 
(KV-MemeNN) to select answers by using key-value structured 
facts in the model memory [12]. Wang et al. propose a bilateral 
multi-view matching (BiMPM) model [13], which utilizes an 
attention mechanism to model the mutual interaction of 
sentences at di�erent scales. Bachrach et al. apply two attention 
operations to capture more word-level contextual information, 
but their work still focuses on enhancing sentence-pair 
representations without considering list-level contextual 
information [14]. A work close to ours is the hierarchical 
GRU-RNN [5], which is used to model word-level and 
sentence-level matching and provide a kind of contextual 
information. However, their approach does not explicitly 
enhance sentence representations by using contextual 
information from other candidates. Our approach incorporates 
list-context information to augment sentence representation. 
Ran et al. propose an option comparison network (OCN) for 
multiple choice reading comprehension (MCRC) [15].

 Guo et al. propose the deep dependent matching model 
(DRMM), which introduces a histogram pooling technique to 
summarize the translation matrix [16]. Xiong et al. propose 
KNRM, which uses a kernel pooling layer to so�ly compute the 
frequency of word pairs at di�erent similarity levels [17]. 
MARCO’s o�cial baseline uses two separate DNNs to model 
query-document relevance using local and distributed 
representations, respectively [18]. Conv-KNRM enhances 
KNRM by utilizing CNN to compose n-gram embeddings from 
word embeddings and cross-matched n-grams of di�erent 
lengths [19]. SAN + BERT base maintains a state and iteratively 
re�nes its predictions [20].

 Previous work mainly uses a multi-stage retrieval 
architecture in web search systems [7]. A set of candidate 
documents is generated using a series of increasingly expensive 
machine-learning techniques. present a method for optimizing 
cascaded ranking models [21]. BERT is a pre-trained language 
model based on the bidirectional Transformer architecture 
[22-26]. It has been demonstrated to be highly e�ective in 
generating rich representations for pairs of sentences. BERT 
o�ers a means to directly model the interactions between 
passages. Sentence-BERT (SBERT) is an improved model based 
on BERT and RoBERTa that is used to e�ciently calculate the 
similarity between sentences [27]. It is trained through siamese 

 Recent studies have improved the quality of general text 
embeddings for representing passages. BAAI general 
embedding (BGE) utilizes the RetroMAE approach for 
pre-training and employs contrastive learning for �ne-tuning 
[3]. Moreover, online services such as OpenAI’s text embedding 
and Cohere-V3 generate text embeddings through their API 
[4]. While previous work has o�en focused on enriching text 
embeddings or enhancing the interaction between 
question-answer pairs, they have rarely considered the in�uence 

of other candidates. As a result, the relationships between 
candidates have not been fully explored. When humans select 
an answer, they consider not only whether each individual 
passage aligns with the question but also the presence of 
superior alternatives. Especially when the passages are derived 
from the same document or related documents, their 
semantics are o�en incomplete, and other candidates may 
contain valuable information that can supplement and 
interpret the current passage. Enriching the representation of 

and triplet network architecture, making the representation of 
sentences in vector space more suitable for cosine-similarity 
calculations. KEPLER proposes a method to jointly optimize 
knowledge embedding (KE) and pre-trained language model 
(PLM) [28]. �is means that the model simultaneously learns 
how to extract relational facts from the knowledge graph and 
how to understand language patterns from text during training.

 General text embedding techniques are commonly 
employed for web search and question answering, and they are 
also used to enhance the capabilities of large language models 
[1,29,30]. BGE adopts the RetroMAE method for pre-training 
and leverages contrastive learning for �ne-tuning [3]. OpenAI 
text embedding produces high-quality text and code vector 
representations through contrastive pre-training on large 
amounts of unsupervised data [4]. Cohere-v31  improves the 
quality of text embeddings by evaluating how well the query 
matches the document’s topic and assessing the overall quality 
of the content. However, when the document is segmented, it is 
easy to cause semantic incompleteness. �e above 
state-of-the-art method only enhances the text embeddings of a 
single passage and cannot obtain supplementary semantic 
information from other passages belonging to the same 
document. Our method provides complementary information 
between passages by modeling the relationship between 
passages in the same document. Our C2FRetriever is trained in 
an end-to-end manner so that the parameters of the coarse 
ranker and �ne ranker can be jointly optimized for better 
collaboration between the two levels.
1https://huggingface.co/Cohere  

Approach
Suppose we have a question Q with l tokens {                           }, 
and a candidate answer set O with n passages {                       }. n 
is the number of passages that can vary over a wide range 
(1~1000). Each passage    contains one or several sentences 
(passage) which consists of      tokens {                          }. �e label 
yi ∈ {0, 1} with 1 denotes a positive answer and 0 otherwise. �e 
goal of the model is to score each passage based on how well it 
answers the question and then rank the passages based on the 
score.

 Our main e�ort lies in designing a deep learning architecture 
that enhances representations by considering the contextual 
information of other candidates. Its main building block has 
two layers, the coarse ranker and the �ne ranker. In the 
following, we �rst describe the two layers and then describe the 
training algorithm.

Coarse ranker
�e architecture of the coarse ranker is shown in the lower part 
of Figure 1. �is layer aims to �lter some answers that are 
irrelevant to the given question to generate an intermediate set 
for performing �ne selection. We use a BERT model to generate 
representations of QA pairs and a single-layer neural network to 
compute matching scores [22]. 

Passage Oi is concatenated with question Q to form a complete 
sequence, denoted as ⟨[CLS]; Q; [SEP]; Oi; [SEP]⟩.

    
where              is the QA representation. Fbert denotes the 
network de�ned in Devlin et al. [22]. �e representations are 

then projected to matching scores using a single layer neural 
network.

Where W^c∈ R^(d and b^c is a scalar. σ is the sigmoid 
activation function. �is layer takes all QA pairs as input          
[(Q, O1), (Q, O2), ..., (Q, O   ], and then the model assigns a 
score to each candidate.

 Modeling all candidates directly will result in 
out-of-memory issues due to the large amount of list-context 
information that needs to be processed simultaneously. �e 
model parameter size is very large, and the gradient state 
retained during the optimization process will double the 
memory usage. To solve this problem, we propose using 
di�erent paths and caching mechanisms. Each path represents a 
di�erent function that processes the data in a way that reduces 
memory usage. �e coarse ranker creates a cache used to store 
the top-k passages it has encountered previously. According to 
p_, passages are dynamically ranked through path S1, which 
contains the function listed below.

where h0 is the initial state of the empty cache. ht is the cache 
state a�er t step update and contains the selected passages. K 
denotes the ranking function.

 Prior early-stage models typically process all the candidates 

Static attention
To capture and compose the context semantics from the answer 
list, our model uses an attention mechanism which achieves the 
best performance in di�erent alternatives to obtain the 
list-context representation [31,32]. �is method extracts 
informative passages and aggregates their representations to 
form the list-context representation V. �is method �rst 
measures the weight of each passage in the list context. 

where Cl ∈Rd is the context vector that can be jointly trained. 
�en, this model computes the normalized weight of each 
passage through a so�max function and aggregates these 
representations.

where max(u) gets the max value of [u_0, u_1, ..., u] where k is 
the candidate number. �is operation encodes the list context 
into a vector which summarizes the main semantics of this list. 
�is allows the model to so�ly consider all candidates in the 
entire list.

Where V  is the list-context representation.

Adaptive attention
While the static attention supplements the list-context 
information for each passage, V  is the same for all candidates 
and does not consider the question. Ideally, we would like to 
overcome the above two problems, by considering list-context 
information and adaptively incorporating the context 
information for each passage based on the question. Our model 
resolves this problem by using adaptive attention which injects 
the correlation information of passages into passage 
representation directly, as shown in Figure 2. �is method �rst 
computes the correlation weight between these passages by 
considering the semantic similarity of the QA pair and the 
list-context information. 

       
�en, this method obtains normalized correlation weights 
through a so�max function.
 

�e adaptive context representation is obtained by calculating 
the weighted sum of the passage representations.

where Z is the adaptive context of i-th passage. By using this 
attention scheme, each passage has a set of adaptive correlation 
weights with other candidates. �is correlation information can 
aggregate the passage representations �exibly. �is interaction 
operation encodes the correlation between candidates while 
also considering the list-context information and question.
�en, the ranking score of the options in the cache can be 
calculated as below.

Where f))�R^(1×τ) and (f))are linear composition matrix and 
bias. τ is vector dimension. [;] denotes the concatenation 
operation. (f)) is the score vector.

and then retain the top-k candidates which are also written to 
disk. Di�erent from them, we incrementally maintain the cache 
memory which only retains the top-k scoring QA pairs. k is a 
hyperparameter. �en, residual path S2 is used to connect the 
QA representation to the �ne ranker, and it contains the 
function of the equation (4).

Where (c) ) represents the    is the matrix 
for top-k QA pairs. (f) denotes the �ne ranker. C is the selection 
function.

 �e residual path S3 indicates that it is used to transfer the 
top-k paragraphs selected in the coarse ranker to the �ne ranker 
layer and generate a vector representation of the passage. Unlike 
the vector representation in the coarse ranker, it only contains 
the content of the passage, not the question. �ese passages are 
derived from the top-k candidate paragraphs to generate list 
context information. �e sorting result is the result of the 
borrowed coarse ranker without repeated calculations. �is 
path can be described by equation (5). Finally, the selected 
passages and representations in the cache are sent to the �ne 
ranker.

Where (f)) is the matrix for top-k passages.(c) is the 
representation for i-th passage, which can be calculated by 
equation (6).

Fine ranker
�e inputs to the �ne ranker are vectors of top-k QA pairs ((f)) 
and top-k passages (f)). �e architecture of the �ne ranker is 
depicted in Figure 2. It incorporates a list-context attention 
mechanism that combines both static and adaptive attention. 

A�er getting the top-k sentences, this model will carry out the 
�ne selection process as described in the Fine Ranker 
subsection. �is model is trained using the log loss of two-level 
selection as shown below.

where yj is the label of the j-th passage. (c)  and (f) are the 
predicted score of j-th passage in the coarse and �ne rankers 
respectively. �en, these two layers are jointly trained to �nd a 
balance between passage selection and joint parameter 
optimization, as shown below.

where λ (We set λ=1.0) is a hyper-parameter to weigh the 
in�uence of the �ne ranker.

 �e asymptotic complexity is described as follows. Assuming 
that all hidden dimensions are ρ, the complexity of matrix (ρ×
ρ)-vector (ρ×1) multiplication is O(ρ2). BERT takes O(Cber). 
For the coarse ranker, calculating the BERT representation of n 
QA pairs and passages takes O(nCber). To maintain the cache, 
we need a top-k sort operation which takes O(nk) at the worst 

case. For the �ne ranker, the list context information requires 
O(ρ2). �e adaptive context information requires O(kρ2). 
�erefore, the total complexity is O(〖nC〗_bert). For BERT, it 
mainly includes matrix-vector multiplication, so the optimized 
calculation requires O(mlρ2). where m is the number of 
matrix-vector multiplications, and l is the sequence length. �e 
computational complexity of this model is still close to that of 
BERT.

Experiments
Datasets
WIKIQIA

�is is a standard open-domain QA dataset. �e questions are 
sampled from the Bing query logs, and the candidate sentences 
are extracted from paragraphs of the associated Wiki pages. 
�is dataset includes 3,047 questions and 29,258 sentences [8], 
where 1,473 candidate passages are labeled as answer sentences. 
Each passage contains only one sentence. We use the standard 
data splits in experiments. Figure 3 visualizes the data 
distribution of this dataset. �e x- and y- axes denote the 
number of candidate sentences and the number of questions 
respectively. �e candidate number of each question ranges 
from 1 to 30 and the average candidate number is 9.6. �e 
average length of question and answer are 6.5 and 25.1 words 
respectively.

Training algorithm
Prior multi-stage retrieval methods typically cascade di�erent 
machine learning techniques. Di�erent from the cascaded 
ranking architecture, we introduce the CPL algorithm to train a 
two-level network for the two-stage retrieval problem. �is 
algorithm performs ranking operations during the training 
process and can optimize the two-stage retrieval processes 
jointly.

 As shown in Algorithm 1, in line 1, this model �rst initializes 
the cache memory. �en, during model training, this model 
adds the ground truth answer to the memory, in line 2. In lines 
3-12, this model maintains the cache memory by coarsely 

selecting the top-k candidates. In lines 4-5, this model calculates 
the matching score based on the BERT representation. If the 
current candidate is a positive answer, its index j, matching 
score (c))  and representation pBert will be added to the cache, 
in line 7. If the current candidate does not match this question, 
this model will maintain the top-k candidates based on their 
scores. In line 13, this model merges the cache memory. In line 
14, this model incorporates the context information of other 
sentences in the �ne ranker to augment the passage 
representation. Finally, this model calculates the loss values of 
coarse and �ne rankers. �en, we can update the model 
parameters by backpropagation using an optimization 
algorithm.

MS MARCO 2.02 

�is is a large-scale machine reading comprehension dataset 
sampled from Bing’s search query logs [9]. We choose the 
dataset for the passage re-ranking task. Given a set of 1000 
passages that have been retrieved using the BM25 algorithm, 
re-rank these passages on their relevance to the query. �is 
dataset was the primary focus of the 2020 and 2019 TREC Deep 
Learning Track. It has also been utilized as a teaching resource 
for the ACM SIGIR/SIGKDD AFIRM Summer School, which 
o�ers courses on Machine Learning for Data Mining and 
Search. Figure 4 visualizes the data distribution of this dataset. 

�e x- and y- axes denote the number of candidate passages and 
the number of questions respectively. �e training set contains 
398,792 questions. �e number of passages in each question 
ranges from 2 to 732. �e question length ranges from 1 to 38 
words. �e passage length ranges from 1 to 362 words. Each 
question average has 100.7 passage candidates. On average, each 
question has one relevant passage. �e development set and test 
set contain 6,980 and 6,837 questions respectively. Each 
question has 1000 passages candidates retrieved with BM25 
from the MS MARCO corpus. In the test set, the question 
length ranges from 2 to 30 words. �e passage length ranges 
from 1 to 287 words.

Hyper-parameters
�is paper employs the BERT-base-uncased model to generate 
representations for sentence pairs. We utilize the output of the 
“[CLS]” token from the �nal layer of BERT as a representation 
of the QA pair. �e projection layer employs a single-layer 
neural network with the hyperbolic tangent activation function 
to generate 200-dimensional vector representations. We use 40 
tokens as the maximum length for questions and 200 tokens for 
answers. �e cache size is set to 15.

 �e AdamW optimization algorithm is used to update the 
model parameters [33]. We �ne-tune the BERT-base-uncased 

model on the passage reranking datasets. �e models run on an 
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (Mem: 330G) 
& 8 Tesla V100s and an Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz (Mem: 256) & 8 RTX 2080Tis.

Evaluation
�is paper uses mean average precision (MAP) and mean 
reciprocal rank (MRR) to evaluate the performance of the 
model. For the MS MARCO 2.0 dataset, we use the o�cial 
script to evaluate our results. �is script calculates the MRR@10 
which considers only the top 10 passages.

Results on the WIKIQA dataset
Table 2 presents the experimental result. Most baseline deep 
learning models typically design e�ective feature extraction 
schemes to better derive features from QA pairs for calculating 
question-answer similarity. �e BERT model has a similar goal 
of mapping a QA pair to a valid representation. �e proposed 
models are the following: 

document and consider all the sentences. Note that this 
setting cannot tackle a situation that has unlimited 
candidates. �e max pooling extracts the document 
information. Because the passage number is less than 30, so 
we can get the max pooling. 

iii. C2Retriever is the proposed model with list and adaptive 
context information.

 We observe that our model outperforms the BERT base and 
improves 1.93% MAP and 0.71% MRR respectively to 
wGRU-sGRU-Gl2-Cnt [5]. Considering the context information 
by max pooling improves 2.88% MAP and 2.92% MRR 
respectively. �is means that considering the document-level 
context information is helpful for each passage. We observe that 
our C2FRetriever improves 6.17% MAP and 6.82% MRR on the 
BERT base model. �is is because our network considers 
context information from other answers. �e sentences of 
WIKIQA come from consecutive sentences in the wiki page 
paragraphs, so other sentences can also provide rich contextual 
information. Our network so�ly incorporates the document 
context information into the sentence representation. 

Results on the MS MARCO 2.0 dataset 
Table 3 lists the results on the MS MARCO 2.0 dataset. 
Compared with the WIKIQA dataset, each passage may contain 
two or more sentences so the passage length varies over a wide 
range. �e passages of any question are from di�erent 
documents retrieved by a search engine, so the continuity of 
passages is also reduced. �is experiment can better test the 
versatility of our method. Nogueira and Cho �ne-tune the 
BERT base and large models and simply use the matching score 
of QA pairs for ranking [37]. Note that they train their models 
on multiple TPUs with appropriate batch size and sequence 
length, which can help to better adapt the representation to the 
target domain. �is device signi�cantly improves model results.

 Our approach potentially enables the usage of BERT based 
ranking model with lower equipment requirements. However, 

the drawback is that we compare the model performance by 
truncating the passage length. We further train our model by 
considering longer sequences (400 tokens) with multiple GPUs. 

Our model achieves further improvement by 1.7%. We achieve 
0.377 on the development set, which improves 3% from the 
TPU BERT base. �e full ranking method achieves the highest 

i. BERT base is the simple BERT model �ne-tuned on the 
WIKIQA dataset. �e inputs to the model are all QA pairs. 

ii. BERT base + MaxPooling denotes the BERT model add the 
max pooling. We organize the QA pairs according to the 

score, but the drawback is that the training process is a 
multi-stage pipeline. In contrast, our model only uses joint 
training and gets the �nal answer in one pass. �is method 
signi�cantly reduces the problem’s complexity.

 Compared with prior works, our approach incorporates the 
context information of other candidates to enhance the passage 
representation. Each query may have hundreds of retrieved 
passages from a large corpus. Our network e�ectively integrates 
the coarse- and �ne-selection processes by simultaneously 
performing model optimization and passage selection in one 
pass.

Ablation study
Table 4 shows the ablation study of the e�ects of di�erent model 
settings. A �rst observation is that the list context and adaptive 
context information are essential for a good result. Removing 
the List context information slightly degrades performance. 
�is indicates that the document-level context is necessary. 
When we train the pipeline model, the result drops (2.7%). �is 
means that joint training is important for the interaction of 
two-level ranking.  To evaluate the in�uence of cache size, we did extensive 

experiments based on di�erent cache sizes, as shown in Figure 
6. We observe that this model achieves higher performance with 
the cache size=16. As the cache size increases, the performance 
improves as it will allow the model to consider more contextual 
information. When we consider many passages, it can hurt 
performance because it introduces noise, so considering all 
candidates is not always a good option. �e choice of cache size 
is important to the result.

 When we replace context information with MaxPooling, the 
result also drops, but it is better than not considering the 
context. �is means considering document-level context 
information is helpful and using MaxPooling is a 
straightforward choice. When we replace MaxPooling with an 
LSTM encoder, the result slightly drops. �is is because the 
passages may not continuous context model and we have the 
long-term dependency problem because we consider all 
pair-wise interactions. When we remove the �ne ranker, the 
result drops. �is suggests that the two-level selection scheme is 
necessary.

 We further analyze the impact of query/passage length and 
number of passages, as shown in Figure 5. We limit the 
maximum length of queries to n tokens. We �nd that, for the 
same length of passage, longer query lengths generally lead to 
better results. However, for shorter query lengths, speci�cally 
when n < 20, longer passage lengths do not always result in 
improved outcomes. Since the meaning of the query is not well 
encoded, longer passages may contain more misleading 
information. �erefore, it is important to interpret and expand 
queries to improve results. We can conclude that an appropriate 
combination of query and paragraph lengths and model 
selection is crucial for the method.

Conclusions and Future Work
In this paper, we present a novel approach to passage reranking 
that incorporates list-context information to enhance the 
representation of passages across di�erent contexts. Unlike 
previous studies, we recognize the signi�cance of list-context 
information from other candidate passages in addressing the 
challenge of incomplete passage semantics and develop a 
method to integrate it e�ectively. Our model addresses the 
limitation of out-of-memory issues by leveraging a cache policy 
learning approach to represent list context. Additionally, we 
address the challenge of two-stage joint retrieval by integrating 
coarse and �ne rankers in a seamless manner. Our model is 

trained by optimizing all components simultaneously, leading 
to the generation of the �nal answer in a single pass, which 
signi�cantly reduces the complexity of the problem.

 �is paper primarily focuses on addressing the challenge of 
incorporating list-context information from other candidates. 
�e model has the potential to be extended to other cascaded 
tasks, such as information extraction and downstream 
applications, in the future [38].
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